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Abstract

In this article we model a Global Navigation Satellite System (GNSS) in a Schwarzschild space-
time, as a first approximation of the relativistic geometry around the Earth. The closed time-like
and scattering light-like geodesics are obtained analytically, describing respectively trajectories
of satellites and electromagnetic signals. We implement an algorithm to calculate Schwarzschild
coordinates of a GNSS user who receives proper times sent by four satellites, knowing their
orbital parameters; the inverse procedure is implemented to check for consistency. The con-
stellation of satellites therefore realizes a geocentric inertial reference system with no a priori
realization of a terrestrial reference frame. We show that the calculation is very fast and could be
implemented in a real GNSS, as an alternative to usual post-Newtonian corrections. Effects of
non-gravitational perturbations on positioning errors are assessed, and methods to reduce them
are sketched. In particular, inter-links between satellites could greatly enhance stability and ac-
curacy of the positioning system.

Keywords: General Relativity, Schwarzschild Space-time, Relativistic Positioning System,
GNSS

1. Introduction

The classical concept of positioning system for a Global Navigation Satellite System (GNSS)
would work ideally if all satellites and the receiver were at rest in an inertial reference frame. But
at the level of precision needed by a GNSS, one has to consider curvature and relativistic inertial
effects of space-time, which are far from being negligible. There are two very different ways
of including relativity in a positioning system: one way is to keep the newtonian conception of
absolute time and space, and add a number of post-newtonian corrections depending on the de-
sired accuracy; another way is to use a relativistic positioning system. This is a complete change
of paradigm, as the constellation of satellites is described in a general relativistic framework.
This new scheme for positioning potentially allows the definition of a very stable and accurate
primary reference system.
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For a detailed review of the post-newtonian scheme of a GNSS one can read Ashby (2003)
and Pascual-Sánchez (2007). In this scheme, the two main corrections come from gravitational
frequency shift between the clocks - due to the local position invariance principle - and from
the Doppler shift of the second order - due to relative motion of satellites and users. A “GPS
coordinate time” is defined as the time of a clock at rest on the geoid. To add the post-newtonian
corrections, it has to be related to the time measured by a clock in an inertial frame at spatial in-
finity. Then one has to perform transformations between the ECI (Earth Centred Inertial system)
and the ECEF (Earth Centred Earth Fixed system). The orbital parameters of the satellite con-
stellation are expressed in the ECEF. To realize the ECEF a network of ground stations receiving
the GNNS signals has been installed. The GPS uses the World Geodetic System 1984 (WGS-84)
and Galileo will use the Galileo Terrestrial Reference Frame (GTRF) (Altamimi 2009). These
global reference frames are fixed to the Earth (via ground stations) so their precision and stability
in time are limited by our knowledge of the Earth dynamics. The main effects are plate tectonic
motions, tidal effects on the Earth’s crust and variations of the Earth rotation rate. In the WGS-84
the best accuracy achieved is 30 cm (NIMA 2000), with an average stability of 4 cm/year (Al-
tamimi 2009). The use of other space geodetic techniques - VLBI, SLR and DORIS - is necessary
to achieve a high precision ECEF. The International Terrestrial Reference Frame (ITRF), main-
tained by the International Earth Rotation and Reference Systems Service, combine efficiently
these four techniques to reach a stability of about 1 mm/year, inferior by a factor of 10 to science
requirements in geology (Altamimi 2009).

These considerations led Bartolom Coll (2003) to propose the project “Système de Position-
nement Relativiste” (SYPOR), i.e. Relativistic Positioning System, an alternative to the scheme
of usual positioning systems. The idea is to give to the constellation of satellites the possibil-
ity to constitute by itself a primary and autonomous positioning system, without any a priori
realization of a terrestrial reference frame. The relativistic positioning system is defined with
the introduction of null coordinates. They have been reintroduced recently by several articles
(Coll and Morales 1991; Rovelli 2002; Blagojević et al. 2002; Lachièze-Rey 2006). They have
different names in the literature: “null coordinates”, “emission coordinates”, “GPS coordinates”,
“GNSS coordinates”. In this article we use the first name which is a reference to their geometrical
properties (see Coll and Pozo (2006) for a detailed article).

The definition of these coordinates is rather simple, but they are a very powerful tool in
general relativity. Let us define four particles a = 1, 2, 3, 4 coupled to general relativity. Their
worldlines Ca are parameterized by their proper time τa. We choose a random origin for τa = 0
on each worldline. Let P be an arbitrary event. Then the past null cone of P crosses each of
the four worldlines in τa

P (see Fig.1). The quadruplet (τ1, τ2, τ3, τ4)P constitutes the complete
set of null coordinates of the event P. The protocol to define null coordinates can be seen in a
different way. The worldline Ca of the particle a defines a one-parameter family of future null
cones, which can be parameterized by proper time τA (see Fig.2). The intersection of four future
null cones τa from four worldlines Ca defines an event with coordinates (τ1, τ2, τ3, τ4). A user
receiving these signals knows its position in this particular coordinate system.

Coll and collaborators (Coll et al. 2006b,a) studied relativistic positioning systems in the case
of a two-dimensional space-time for geodesic emitters in a Minkowski plane and for static emit-
ters in the Schwarzschild plane. A relativistic positioning system has been studied in the vicinity
of the Earth: calculations were performed to first order in a Schwarzschild space-time (Bahder
2001; Ruggiero and Tartaglia 2008). Bini et al. (2008) described null coordinates in the local
Fermi frame of a user. A “galactic reference system” has been studied, where timing signals
received by four pulsars were considered as null coordinates (Coll and Tarantola 2003; Tartaglia

2



P

Ca

null (past) 
cone of P

particle a trajectory

t

y

x

O

τaP

Figure 1: Defining null coordinates with the null past
cone of a space-time event: let P be an event in space-
time. Ca is the worldline of a test particle a parameter-
ized by its proper time τa; its origin O is in τa = 0. The
past null cone of the event P cross Ca at the proper time
τa

P. With four different particles with the worldlines Ca
(a = 1, 2, 3, 4), the past null cone of P crosses the four
worldlines in τ1

P, τ2
P, τ3

P and τ4
P. Then (τ1, τ2, τ3, τ4)P

are the null coordinates of the event P.
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Figure 2: Defining null coordinates with four one-
parameter families of null future cones: the worldline
Ca defines a one-parameter family of null future cone.
These null cones are hypersurfaces of τa = constant.
The intersection of four null cones defines the event
with coordinates (τ1, τ2, τ3, τ4). The four particles can
be chosen as four satellites of a constellation of satel-
lites, broadcasting their proper time.

et al. 2010). The next generation of GNSS could have cross-link capabilities (Directorate of
the Galileo Programme and Navigation Related Activities 2009). Each satellite will broadcast
proper time to the other satellites in view, as well as their proper time. With this information, one
could in principle map the space-time geometry in the vicinity of the constellation of satellites
by solving an inverse problem (Tarantola et al. 2009).

In this article, we assess the practical feasibility of a relativistic positioning scheme for a
constellation of satellites in orbit around the Earth. The Schwarzschild geometry is chosen as a
first approximation of the space-time geometry around the Earth. In section 2 we give solutions
of geodesic equations for closed time-like orbits - satellites orbits - and for scattering light-like
orbits - photons orbits. In section 3 we describe two algorithms: (i) how to deduce null coor-
dinates of an event in space-time knowing its Schwarzschild coordinates and orbital parameters
of a constellation of four satellites and (ii) how to calculate Schwarzschild coordinates of an
event knowing four proper times sent by four satellites, and their orbital parameters (reverse al-
gorithm). We study the speed and accuracy of these two algorithms implemented in Fortran 95.
Finally, in section 4 the effects of non-gravitational perturbations on the relativistic positioning
system are assessed.
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2. Geodesics in the Schwarzschild space-time

The Schwarzschild space-time is a good approximation of the geometry around the Earth.
The local inertial coordinate system is tied to the center of the Earth and oriented into 4 mutually
orthogonal directions t, X, Y , and Z1. The Schwarzschild space-time is usually represented by
the metric in spherical coordinates t, r, θ, and φ, such that X = r sin θ cos φ, Y = r sin θ sin φ, and
Z = r cos θ . In these coordinates the metric is

ds2 = −C(r)dt2 + C−1(r)dr2 + r2dΩ2 (1)

where

C(r) =

(
1 −

2M
r

)
, (2)

dΩ2 =
(
dθ2 + sin2(θ)dφ2

)
and M is the Earth mass. We use natural units2 c = G = 1. Geodesics

are governed by the Hamiltonian:

H =
1
2

[
−C−1(r)p2

t + C(r)p2
r +

1
r2

(
p2
θ +

1
sin2 θ

p2
φ

)]
, (3)

which admits 8 constants of motion (Čadež and Gomboc 1996): value of Hamiltonian (H) and
Lagrangian (L), controlling the relation between time and distance, energy (E = pt), three com-
ponents of angular momentum (~l), longitude of periapsis (ω) and time of periapsis passage (tp).

It is convenient to introduce another local inertial (right-handed) orthonormal tetrad n̂, ê1 and
ê2 (c.f. Fig. 3). n̂ is the constant unit vector pointing in the direction of the angular momentum:
~l = ln̂. The two unit vectors ê1 and ê2 in the orbital plane are such that ê1 points in the direction of
the initial perigee. The components of these vectors with respect to the local Cartesian coordinate
basis are expressed as:

ê1 = (cosω cos Ω − cos ι sinω sin Ω, cosω sin Ω + cos ι sinω cos Ω, sin ι sinω)

ê2 = (sinω cos Ω − cos ι cosω sin Ω,− sinω sin Ω + cos ι cosω cos Ω, sin ι cosω)

n̂ = (sin ι sin Ω,− sin ι cos Ω, cos ι) , (4)

where Ω is the longitude of the ascending node and ι is the inclination of the orbit with respect
to the X − Y plane.

The only parameter changing along the orbit is the true anomaly λ. It obeys the differential
orbit equation (Čadež and Gomboc 1996):

du
dλ

= ±
√

A2 − u2(1 − u) + B(1 − u), (5)

where u = 2M/r, and A = 2ME/l and B = 2H(2M/l)2 are two constants of motion related to
orbital energy and orbital angular momentum. After (5) is solved for u as a function of λ, the
orbit can be described with

~r(λ) =
2M
u

(ê1 cos λ + ê2 sin λ). (6)

1The Earth’s local inertial coordinate frame is precessing with respect to the global inertial frame tied to distant stars.
The precessions are due to different gravitational perturbations of Earth’s multipole moments, gravitational perturbations
of the Moon, Sun and planets. These motions can be well modelled, but are not the matter of this article.

2To recover usual units one can replace M = Gm⊕/c2 when measuring distance and M = Gm⊕/c3 when measuring
time, where m⊕ is the mass of the Earth in the usual units.
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Figure 3: The orbital plane in equatorial coordinates: ~n unit normal, ι inclination, Ω longitude of the ascending node, ω
longitude of periapsis and λ true anomaly.

The spherical coordinates θ and φ along the orbit are expressed as3 (Čadež and Gomboc
1996, Eqs. 6 – 16):

cos θ = sin ι sin(λ + ω) (7)

tan
ϕ −Ω

2
=

cos ι sin(λ + ω)
sin θ + cos(λ + ω)

(8)

Time and proper time obey the following differential equations:

dt
du

=
2MA

u2(1 − u)
√

A2 − u2(1 − u) + B(1 − u)
(9a)

dτ
du

=
2MA

E
1

u2
√

A2 − u2(1 − u) + B(1 − u)
. (9b)

The differential equations (5) and (9a) are formally the same for light-like (where B = 0)
and time-like orbits. However, solutions depend on the type of orbit, e.g. closed, scattering or
plunging. In the following subsections we give solutions for closed time-like orbits and scattering
light-like orbits, which can be used to model satellites and photons trajectory in a GNSS.

2.1. Time-like geodesics
GNSS satellites are on closed time-like orbits. After solving (5) for such case, we obtain the

orbit equation

u(λ) = U2 − (U2 − U3)cn2
(
K(ma) +

λ

2na

∣∣∣∣∣ma

)
, (10)

3Note that sin θ = +
√

1 − cos2 θ.
5



-200 200 400 600

-400

-200

200

400

0 20 40 60 80 100 120
0

200 000

400 000

600 000

800 000

1.0 ´ 106

1.2 ´ 106

1.4 ´ 106

Λ

t@M
D,

Τ@
M

D
0 20 40 60 80 100 120

0

1000

2000

3000

4000

Λ

t-
Τ

Figure 4: Left: A time-like orbit with semi-major axis a = 500 rg and eccentricity ε = 0.3. Middle: Time (black) and
proper time (red) for the same orbit. Right: The difference between time and proper time for the same orbit. All values
of r, t, and τ are in units of M.

where U1, U2 and U3 are the roots of the polynomial P(u) = A2 − u2(1 − u) + B(1 − u), and na

and ma are functions of them. K and cn are the complete elliptic integral of the first kind and
Jacobian elliptic function respectively. The true anomaly λ is defined as in the Keplerian case; at
periapsis it has values λp = 4naK(ma)k, where k is an integer. U2 and U3 are related to the radii
of the periapsis rp = 2M/U2 and apoapsis ra = 2M/U3 respectively. For circular orbits U2 = U3,
and the orbit equation reduces to r = const. = ra = rp.

Schwarzschild time and proper time along the orbit are obtained by integrating equations
(9a) – (9b). Their expressions can be found in Čadež et al. (2010).

A solution of the time-like geodesic equation is illustrated in Fig. 4. Orbital parameters were
intentionally chosen such that relativistic effects are clearly visible, i.e. periapsis precession and
the difference between time and proper time. For the values of orbital parameters of the Galileo
satellites, the difference between coordinate time and proper time goes up to 10 µs per orbit.

2.2. Light-like geodesics and ray-tracing
In the eikonal approximation, electromagnetic signals sent by satellites follow null scattering

geodesics. After solving (5) with B = 0 for such cases, we obtain the orbit equation

u(λ) = u2 − (u2 − u3)cn2
(
K(m) +

λ

n

∣∣∣∣∣m)
, (11)

where the true anomaly λ takes values on the interval λ ∈ (F(χmax|m) −K(m),F(χmin|m) −K(m)).
Here χmin = arccos

(√
u2/(u2 − u3)

)
, χmax = arccos

(
−
√

u2/(u2 − u3)
)
, F is the elliptic integral of

the first kind, and u1, u2, u3 are the roots of the polynomial P(u) = A2 − u2(1 − u). The constants
u1, u2, u3, m, n depend only on one constant of motion - A = 2ME/l, which is the inverse of the
impact parameter.

Coordinate time and proper time as a function of λ is obtained by integrating equations (9a)
and (9b) (Čadež et al. 2010). In the case of GNSS, the gravitational field is very weak so photon
orbits are essentially straight lines. Differences between the relativistic and non-relativistic time-
of-flight are of the order of 1 ns when considering a signal travelling from a satellite to the user.

Calculating null coordinates of an event in space-time requires one to be able to follow light
rays emitted from the satellites towards that event. Thus, one would like to find the quickest
way to determine all the constants of motion of a null geodesic that connect a given initial point
Pi = (ti, ri, θi, ϕi) and a final point P f = (t f , r f , θ f , ϕ f ). Čadež and Kostić (2005) have proposed a

6
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Figure 5: Determining a light-like geodesic between points Pi and P f from known ∆λ, ri, and r f . The calculated orbit
is shown in red. This case corresponds to a strong gravitational field in order to see the effect.

Figure 6: Determining null coordinates from Schwarzschild coordinates. The signal is received at Po. The point of
emission Pi has to be determined by connecting the two points with a light-like geodesic (diagonal line). For clarity, only
one spatial coordinate is shown.

ray-tracing method which completely solves this problem in the Schwarzschild space-time. The
method uses spherical trigonometry and the analytic expression of the orbit equation (11). An
example of orbit determination from ∆λ, ri, and r f is shown in Fig. 5.

3. Simulation of the constellation of satellites

3.1. Determining null coordinates

We assume that the constants of motion of all satellites are known. Their trajectory can
be calculated and parameterized by their true anomaly λ. Let us define a user at the event
Po = (to, xo, yo, zo). He receives signals from four satellites that were sent at Pi = (ti, xi, yi, zi),
corresponding to λi (i = 1, ..., 4). Null coordinates of the user at Po are the proper times τi(λi) of
the satellites at Pi (see Fig. 6). We calculate λi at the emission point Pi using the equation that
connects Po and Pi with a light-like geodesic

to − ti(λi) = T f (~Ri(λi), ~Ro) , (12)
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where ~Ri = (Xi,Yi,Zi) and ~Ro = (Xo,Yo,Zo) are respectively the spatial vectors of the satellites
and the user. The function T f calculates the time-of-flight of photons between Po and Pi as
described in Čadež and Kostić (2005). This equation can be very efficiently solved with known
algorithms, e.g. Newton’s method. Once the value of λi is determined, it is straightforward to
calculate the proper time of emission τi for each satellite and thus obtain null coordinates of the
user at Po = (τ1, τ2, τ3, τ4).

3.2. Calculating Schwarzschild coordinates

Here we solve the inverse problem: calculate Schwarzschild coordinates of the event Po

from (τ1, τ2, τ3, τ4) sent by the four satellites. As we assume that the constants of motion of
all satellites are known, we can deduce their space-time positions Pi = (ti, xi, yi, zi) from proper
times τi. EventsPi = (ti, xi, yi, zi) andPo = (to, xo, yo, zo) are connected with light-like geodesics.
In a flat space-time, they solve the four equations

to − ti =

√
(xi − xo)2 + (yi − yo)2 + (xi − xo)2. (13)

These four equations can be solved for (to, xo, yo, zo) by a geometric construction. Let ~Ri =

(Xi,Yi,Zi) be the spatial coordinates vectors of the satellites at Pi. The situation is illustrated in
Fig. 7, where the four green points represent the four satellites at ~Ri and the red point is the user.

The 4 spheres centred at ~Ri have radii (to − ti). Thus, the user is at the intersection of the
four spheres. To find his position, we proceed as follows: suppose that the user’s dead reckoning
coordinates are (t(0)

o , x(0)
o , y(0)

o , z(0)
o ). The radii of the four spheres centred at ~Ri would then be

(t(0)
o − ti). In general, these four spheres have no common point. However, the dead reckoning

position can always be chosen in such a way that any two spheres intersect. Consider the planes
defined by the circle of intersection of sphere 1 and 2 and sphere 3 and 4. These two planes
generally intersect along a straight line; call it line 1. Next consider the intersection of spheres 1
and 3, and spheres 2 and 4. The corresponding planes intersect along a straight line called line
2. If (13) is satisfied, then line 1 and line 2 intersect at the position of the user. However, since
(t(0)

o , x(0)
o , y(0)

o , z(0)
o ) is not yet the solution of (13), the lines 1 and line 2 generally bypass each other.

We calculate the positions on both lines where they meet at closest distance. The geometrical
center of the two positions is taken as the better approximation for the spatial position of the
user ~R(1)

o , and the distance between the two points of closest passage (d~P) is a measure of how
close we are to the solution. In the next step, we repeat the procedure with a slightly different to
to find the derivative of d~P with respect to to. This derivative is then used in Newton’s method
to find a new t(1)

o with a smaller d~P. With this value a new spatial position ~R(2)
o is calculated

and the procedure is repeated until d~P becomes less than the value prescribed by the accuracy
requirement. After n steps (n ∼ 5), the procedure converges to {t(n)

o , ~R(n)
o }, the solution of (13).

Note, however, that a unique solution exists only if the normals to all planes whose intersections
define lines 1 and 2 do not lie in a plane, i.e. if the four satellites do not lie in one plane.

However, eq. (13) does not take into account the gravitational time delay and the bending
of light, so our result is not exact. For realistic positions of Galileo satellites the position error
is a few 10−9 orbital radii, i.e. a few centimetres. The final correction to the position is made
by solving the relativistic equations of light propagation from the satellites to the user in the
following form:

to − ti = T f (~Ri, ~Ro) , (14)

8



Figure 7: The four green points represent the four satellites at ~Ri and the red point is the user.

where T f (~Ri, ~Ro) calculates the coordinate time for the light to travel from ~Ri to ~Ro. Taking
{t(n)

o , ~R(n)
o } as an initial approximation, we use a generalization of the classical stellar navigation

solution to solve (14). This equation is written in the form:

t(n)
o + dt − ti = T f (~Ri, ~R(n)

o + d~R)

= T f (~Ri, ~R(n)
o ) + ~∇oT f (~Ri, ~R(n)

o ) · d~R + O(d~R2), (15)

where ~∇o is the gradient with respect to the position of the user ~Ro. We now assume that the
gravitational field is weak, i.e. |M/R| � 1. Then

T f (~Ri, ~Ro) = |~Ro − ~Ri| + O(M)

and

~∇oT f (~Ri, ~Ro) =
~Ro − ~Ri

|~Ro − ~Ri|
+ O(M/R)

= ûi + O(M/R), (16)

where ûi is the unit vector pointing from satellite i to the supposed position of the user. Eq. (14)
now becomes a set of four linear equations for dt and the three components of d~R:

t(n)
o − ti − T f (~Ri, ~R(n)

o ) = −dt + ~u(n)
i · d~R. (17)

The error of the corrected position decreases by 6 to 9 orders of magnitude – bringing the Galileo
position error to the order of micrometers. If necessary, this error can be decreased even further

9



Figure 8: The orbits of 4 satellites around the Earth. The satellites at initial positions are marked with black dots, and the
user on Earth’s surface with a red dot. The green sphere represents the Earth. The sizes of satellites are not to scale.

satellite Ω [◦] ω [◦] ι [◦] a [rg] ε tp [rg/c]
1 0 0 45 5 × 109 1.1 × 10−9 0
2 30 5 45 5 × 109 1.1 × 10−9 0
3 60 10 45 5 × 109 1.1 × 10−9 0
4 90 15 45 5 × 109 1.1 × 10−9 0

Table 1: Orbital parameters for 4 satellites: longitude of ascending node (Ω), longitude of perigee (ω), inclination (ι),
major semi-axis (a), eccentricity (ε), and time of perigee passage (tp).

by solving (17) again with t(n+1)
o = t(n)

o + dt and

~R(n+1)
o = ~R(n)

o + d~R . (18)

3.3. Accuracy and speed of algorithms

The above algorithms were tested in a simulation of 4 satellites S i (i = 1, ..., 4) in orbit around
the Earth communicating with a static user on the Earth’s surface4. The only input parameters are
the orbital parameters of the four satellites (table 1) and the coordinates of the user. The orbits
for the four satellites are illustrated in Fig. 8. The Schwarzschild coordinates of the user are

ro = 1.595 · 109 M , θo = 43.97◦ , φo = 14.5◦.

The simulation runs in the following way. At every time-step

t(n) = t(n−1) + ∆t , n = 2, 3...,

where ∆t = 6 · 1012 M and n counts the time-steps of the simulation:

1. We calculate null coordinates (τ(n)
1 , τ(n)

2 , τ(n)
3 , τ(n)

4 ) of the user from his Schwarzschild coor-
dinates (t(n), x(n−1)

o , y(n−1)
o , z(n−1)

o ), as described in Sec. 3.1. (For n = 1 we choose (t(1), x(0)
o , y(0)

o , z(0)
o ) =

(0, ro, θo, φo)).

4The problem of the atmospheric perturbations is not in the scope of this paper.
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n εt εx εy εz

430 1.93758E-32 -6.15473E-27 -7.34498E-26 -4.86318E-26
431 -2.99206E-32 -1.78472E-26 -7.64415E-26 1.84489E-25
432 -1.46740E-31 -4.82243E-26 -1.13881E-25 7.31360E-25
433 -1.72335E-32 -1.09471E-26 -7.03668E-26 1.27280E-25
434 -1.01827E-32 -7.65914E-27 -5.69550E-26 9.27816E-26

Table 2: Relative errors of the coordinates as defined in (19) – (20), for the last five time-steps of the simulation, which
is equivalent to more than one orbit of the satellites.

2. From previously calculated null coordinates (τ(n)
1 , τ(n)

2 , τ(n)
3 , τ(n)

4 ), we calculate Schwarzschild
coordinates (t(n)

i , x(n)
i , y(n)

i , z(n)
i ) for every satellite S i at its new position τ(n)

i by numerically
solving the equation τ(λ(n)

i ) = τ(n)
i for λ(n)

i .
3. From these Schwarzschild coordinates (t(n)

i , x(n)
i , y(n)

i , z(n)
i ), we calculate Schwarzschild co-

ordinates (t(n)
o , x(n)

o , y(n)
o , z(n)

o ) of the user as described in Sec. 3.2.

The numerical code of this simulation is written in Fortran 90 and is publicly available on
the website atlas.estec.esa.int/ariadnet. This code can be easily generalized to include
a moving user, more satellites or communications between all the satellites.

Accuracy. The accuracy of these algorithms is tested by comparing the initial Schwarzschild
coordinates of the user with his Schwarzschild coordinates calculated at each time step. As the
user is static, his coordinates (xo, yo, zo) should be constant during the simulation.

In table 2 we show the relative errors of all the coordinates, defined as

ε(n)
t =

t(n) − t(n)
o

t(n) (19)

and

ε(n)
x =

x(1)
o − t(n)

o

x(1)
o

, ε(n)
y =

y(1)
o − t(n)

o

y(1)
o

, ε(n)
z =

z(1)
o − t(n)

o

z(1)
o

. (20)

The relative error of the coordinate t is ∼ 10−32, and relative errors of the coordinates x, y, and z
are few orders of magnitude larger, i.e. ∼ 10−25 − 10−27.

The algorithm for determining Schwarzschild coordinates from null coordinates (Sec. 3.2)
works only if the four satellites are not in the same plane. This may happen during a simulation in
which case the resulting position has a very large error or is left undetermined. As an example, we
show in table 3 relative errors where the positions cannot be determined for a given configuration
of the satellites, which is reflected in a jump in the relative errors from ∼ 10−31 to ∼ 10−2 for
the coordinate t, and from ∼ 10−25 to ∼ 10+3 for the coordinate z. In the case of GNSS satellites
such a situation should never occur, since there are always more than four satellites visible and
it should always be possible to choose four that do not lie in the same plane.

Speed of calculations. The simulation was tested on a PC with an Intel Core2 Quad CPU Proces-
sor Q6600 at 2.4 GHz and 4GB RAM. The OS was Linux x86 64 with kernel 2.6.28-18-generic,
with the Intel Fortran Compiler 10.1. The maximum number of time-steps is nmax = 434, equiv-
alent to more than one orbit of the satellites. The calculation for steps 1 to 3 described above
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n εt εx εy εz

7 -1.11018E-30 3.21695E-27 -8.46151E-26 1.88565E-25
8 -9.83688E-31 3.86661E-27 -9.02631E-26 2.02826E-25
9 -9.29760E-31 3.02395E-27 -8.94093E-26 2.02005E-25

10 -5.15060E-02 -7.85972E+02 -7.40892E+01 -2.31309E+03
11 -1.51029E-02 -2.56711E+02 -2.44827E+01 -7.56241E+02
12 -9.12949E-03 -1.71063E+02 -1.66154E+01 -5.04159E+02

Table 3: Relative errors for a planar configuration of satellites.

repeated 434 times (i.e. for 434 time-steps) takes 67.6 seconds to execute (0.1558 seconds/time-
step). The time of calculation for steps 2 and 3 (repeated 434 times) is 26.6 seconds (0.0682
seconds/time-step). These two steps are actually the ones that the users will perform to deter-
mine their positions.

The simulation was also tested on a laptop with an Intel Core2 Duo CPU Processor P8600
at 2.4 GHz and 4GB RAM. The OS is the same as before, but with the Intel Fortran Compiler
11.1. In this case, some processor-specific compiler optimizations are enabled. The maximum
number of time-steps is the same as before: nmax = 434. The time of calculation for steps 1-3 de-
scribed above repeated 434 times (i.e. for 434 time-steps) is 61.9 seconds (0.1426 seconds/time-
step). The time of calculation for steps 2 and 3 (repeated 434 times) is 26.5 seconds (0.0588
seconds/time-step).

In both cases, a 25 – 32-digit accuracy is achieved when determining the space-time position
of the user.

4. Effects of non-gravitational perturbations

The important non-gravitational perturbations are those governed by stochastic noise, i.e. by
phenomena that cannot be predicted in advance. Clock noise, solar radiation pressure, solar wind
pressure and collisions with interplanetary dust particles are sources of such noise. The nature of
these forces and also the nature of the uncertainty in knowing their magnitude and direction are
quite different.

Clock errors. Clock errors affect the position determination by giving false information on the
time of flight from the satellite to the user. Assuming that a typical clock error can be described
as a flicker noise with a standard deviation error of 1 ns/day, we can assign a displacement error
of dt =0.3 m per day to stochastic clock perturbations.

Solar radiation. The solar radiation pressure produces a force

~Frp =

(
1 + (η − 1)a

)
·

L�
4πr3c

~rA, (21)

where ~r is the radius vector from the Sun to the satellite, A is the cross section of the satellite
from the impinging direction, a is the effective albedo of the satellite (generally depending on
the angle of incidence of the solar light on the satellite) and η is a tensor attached to the satellite,

measuring the effective momentum of reflected light. Assuming that a, η and A are constants,
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Figure 9: As the Earth (blue sphere) moves about the Sun (yellow sphere), the solar radiation pressure makes the satel-
lites’ orbital angular momentum precess so that the tip of the orbital angular momentum follows the red ellipse; the gray
circle shows where the tip of angular momentum would be without precession.

the effect can be calculated very precisely since the solar luminosity is a well known constant. In
this case the main effect of solar radiation pressure is a precession of the satellite orbital angular
momentum with an angular velocity

~Ωrp =
Ωyear

ω2
srs
·

n̂ × ~Frp

m
, (22)

where n̂ is defined in section 2, m is the mass of the satellite, Ωyear is the angular velocity of the
solar radiation force with respect to the orbital angular velocity of a satellite, i.e. Ωyear '

2π
1 year ,

ωs = 2π Ps (where Ps ∼
1
2 day) is the orbital angular velocity of the satellite and rs is the distance

of the satellite from the center of the Earth. This effect, schematically shown in Fig. 9, makes
the orbital angular momentum oscillate with the orbital period of the Earth around the Sun. The
displacement of the satellite’s position due to solar radiation pressure as a function of time can
be written as

drp =
Frp

4π2m
P2

s sin
(
Ωyeart

)
cos(ωst + δ). (23)

The amplitude of this term can be considered as a measure of the solar radiation strength. If
we assume the satellite to have a mass of 600 kg, a cross sectional area of 0.5 m2 and take
F� = 1300 W/m2 for the solar constant, we obtain drp ∼ 0.17 m.

A realistic calculation of the effect of the solar radiation pressure is somewhat more compli-
cated, since a, η and A depend on the orientation of the satellite with respect to the direction to

the Sun. It is probably safe to assume that this dependence can be known to better than 1% or
maybe even 0.1% in which case the unpredictable stochastic part of the effect of solar radiation
pressure would be always below millimeters.

Solar wind. The perturbing force due to solar wind pressure is similar to the radiation pressure
force since it originates from the same direction. However the pressure term L�

4πr3c~r must be
replaced by Ṁ

4πr2~v, where Ṁ and ~v are respectively the solar wind mass loss rate and velocity.
Their typical values found in literature are: Ṁ ∼ 4 × 1019 g/year and v ∼ 500 km.s−1. Using
these numbers we deduce that solar wind pressure is about 200 times weaker than solar radiation
pressure.
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Because of this weakness it may not be important at this point to be able to determine the
uncertainty in the solar wind albedo and the equivalent of η. It is certainly not as important as
finding the truly stochastic part of solar wind, which is constituted by the coronal mass ejections
hitting the satellite. Coronal mass ejections are violent outbursts from the solar surface, occurring
every few days and carrying away masses 1014 to 1016 g at speeds up to 5000 km.s−1 (Landi
et al. 2010; Zhang et al. 2010). We assume that the coronal mass flow is spread evenly in a
spherical shell moving away from the Sun5. When particles from this shell hit the satellite, it
gains momentum δp. The displacement after one day is

dcme =
δp
m
· 1 day (24)

Using the largest numbers quoted, we obtain an estimate dcme ∼ 0.0003 m for the purely stochas-
tic part of solar wind displacement a day after the coronal mass ejection.

Interplanetary dust. A relatively small non-gravitational perturbation, but completely stochastic
in nature is produced by collisions of satellites with interplanetary dust. Our estimates of these
perturbations are based on data from Nesvorný et al. (2006), who studied the dust bands Karin
and Veritas. The authors claim that these dust bands contribute from 30 to 50% of all inter-
planetary dust in the near Solar system. They contribute 15000 to 20000 tons per year in dust
accretion rate to the whole Earth. We assume that in the vicinity of the Earth the dust accretion
is approximately isotropic and that it is proportional to the accreting area (4πR2 = 4A = 2m2).
Taking 36000 tons per year as the total mass accretion rate on the Earth, we thus estimate the
dust accretion rate per satellite to 1.4 × 10−4 g/year.

We come to the following main conclusions: solar system dust presents a very mild drag
resistance to satellite motion around the Earth. The typical orbital decay time scale is of the
order of ∼ 3 · 109years. The stochastic component is contributed mostly by collisions with 100-
200 µm dust particles which move with respect to the Earth (and with respect to satellites) with
an average velocity ∼ 17 km.s−1 and occur with a probability of less than one per year. The
velocity change due to such a collision is δvdust ∼ 5 − 20 · 10−8 m.s−1. The displacement of a
satellite due to such a collision observed after one day would amount to ddust ' 5− 20 mm. Note
that such collisions could be detected and their impact measured if the satellites would monitor
their mutual positions, since the probability for more than one collision to occur during the same
day is very small.

Comparison. It is difficult to compare the strength of these so different non-gravitational pertur-
bations without more extensive data on their character, changing strength and without carefully
considering statistical properties of these noise sources. Such a study would go beyond the scope
of this article and may not even be very useful before it could be verified experimentally. To
make a very rough comparison of importance of each of the listed perturbations, we assign to
each perturbation a “force” and a displacement/day. As the worst case we simply use the full
perturbing force to calculate the displacement of a satellite after one day. This is a gross overes-
timate in the case of solar radiation pressure or solar wind pressure. We attempt to refine such
noise upper limit by estimating only the stochastic part of 1-day position error, i.e. the error
remaining after the known part of the perturbing force has been taken into account with the best

5This is certainly not a realistic assumption with respect to each single event, but may not be so bad on long term
average.
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Table 4: Non-gravitational noise sources

perturbation magnitude displacement/day stochastic component
clock noise 1ns/day - 0.3m

radiation pressure 4.3×10−6Nm−2 13m <0.001m?
solar wind pressure 2.2×10−9Nm−2 0.007m ∼ 0.0003m?

dust collisions ∼ 100µm part - ∼ 0.00005m

available data. Dust collision differs from all other perturbations considering their very low prob-
ability rate. Thus their displacement per day is just a very long term average. Our estimates are
given in Table 4. The reader should be aware of the large uncertainty involved in these estimates.

Even if the above estimates are very rough it is clear that timing noise is by far the most
important noise source that must be controlled on a longer time scale. However, it is worth
pointing out that the non-gravitational perturbations, apart from the slow drag mentioned above,
do not systematically change the orbital momentum of the satellites (after all the precessions due
to gravitational perturbations have been properly taken into account). It implies that the area
swept by the radius vector from the center of the Earth to each satellite can be a clock with a
very good long term phase stability, limited in principle only by the uncertainty in the swept
area. If each satellite was capable of detecting the timing signal of all the other visible satellites,
it would be possible to use the timing capability of the constellation of satellites to determine its
own space-time position.

5. Conclusion

We studied the use of null coordinates. They are user independent and realized by radio wave
communications from a constellation of four satellites to a GNSS user. We introduced a local
Schwarzschild coordinate system with three spatial orthonormal directions and one time-oriented
vector, with coordinates X,Y,Z, t. Before taking into account the gravitational perturbations due
to the Moon, Sun, planets, obliquity and rotation of the Earth, etc. . . , this local coordinate system
can be considered as a global inertial system, i.e. oriented in fixed directions with respect to dis-
tant stars. Since the main effect of gravitational perturbations is to make the local Schwarzschild
frame precess about different axes determined by the orbits of the perturbing bodies, and these
precessions are very slow, the local Schwarzschild coordinate frame can to a high degree of ac-
curacy be considered as inertial. Due to this fact it is possible to decouple the problem of the
motion in the local Schwarzschild frame from the problem of connecting the local Schwarzschild
frame to the global inertial frame. This second problem is well understood in the framework of
classical non-relativistic gravitational perturbation theory, and will be the subject of a following
article.

In this article we concentrated on finding algorithms to describe the dynamics of bodies in
the local Schwarzschild frame in full general relativity, in defining null coordinates in space-time
that are tied to the constellation of satellites and in reading these coordinates in order to deter-
mine the Schwarzschild coordinates of an event in space-time. We obtained the analytic solutions
for light-like (scattering) and time-like (closed) geodesics. We defined two algorithms: (i) an al-
gorithm that calculates null coordinates (τ1, τ2, τ3, τ4) corresponding to the local Schwarzschild
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coordinates (to, xo, yo, zo) of a user, and (ii) the “reverse” algorithm that calculates space-time co-
ordinates (to, xo, yo, zo) of a user from its null-coordinates (τ1, τ2, τ3, τ4). We assume that orbital
parameters of satellites are known.

The two algorithms have been written in Fortran 90 and checked against each other for con-
sistency. All codes have been optimized for weak gravitational fields, and tested on a PC with
a quad-core CPU and a laptop with a dual-core CPU. It takes ∼ 60 − 70 ms to determine all
four coordinates with 25 – 32-digit accuracy. This makes our codes feasible and could be used
in modern positioning devices. The effects of non-gravitational perturbations have been studied.
We focused mainly on the stochastic part of these perturbations. Clock noise has been identified
as the most important contributor affecting the accuracy of position determination. By magnitude
the second perturbing force is solar radiation pressure. We note, however, that this force is very
stable and could, at least in principle, be modeled to a very high precision. Therefore, its stochas-
tic effect is not expected to contribute significantly more to position noise than the remaining two
truly stochastic perturbations: solar wind pressure and collisions with interplanetary dust.

We believe to have shown that the use of a fully relativistic code in GNSS systems offers
an interesting alternative to the use of post-Newtonian approximations, and presents no technical
obstacle. The advantages of using a fully relativistic code over the use of classical post-newtonian
codes go well beyond aesthetics. The stochastic part of the non-gravitational perturbation forces
has no preferred direction; therefore they are not expected to change average values of orbital
angular momenta of satellites. It implies that area velocities of satellites are good constants of
motion perturbed only by deterministic gravitational perturbations. Therefore we suggest that the
area covered by the radius vector from the center of the Earth to the satellites be used as a stable
measure of proper time, in particular to correct the long term clock drifts. The constellation
would have a greater autonomy in defining its own local Schwarzschild frame in which the
predictability of dynamics can be taken advantage of.

This concept of autonomy offers an increased accuracy and long term stability to the global
positioning system. It promises us a tool for a systematic study of the space-time metric around
the Earth and a deeper insight into the Earth internal dynamics. In order to realize such an au-
tonomous constellation, it must be self-consistent. By this we mean that if satellites determine
their orbits by using positioning data from other satellites in the constellation, they should obtain
the same constants of motion that were used in the definition of the global positioning system.
Such self-consistency at the maximum level of precision is not obvious, but can be reached if
each satellite is also a receiver of timing signals of all other satellites. We believe we can de-
sign a mathematical procedure to drive any initial GNSS solution toward the best self consistent
solution.
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Čadež, A., Kostić, U., Delva, P., 2010. Mapping the Spacetime Metric with a Global Navigation Satellite System - Final

Report. Ariadna final report, Advanced Concepts Team, European Space Agency.
Coll, B., 2003. A principal positioning system for the Earth. In: Capitaine, N., Stavinschi, M. (Eds.), Journées 2002
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