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Introduction

I
n this study we model a Global Navigation Satellite System (GNSS) in a Schwarzschild

space-time, as a �rst approximation of the relativistic geometry around the Earth. Two

very di�erent ways of taking into account relativity in positioning systems are presented in

the �rst chapter. In the second chapter closed time-like and scattering light-like geodesics

are obtained analytically, describing respectively trajectories of satellites and electromag-

netic signals. A method for ray-tracing in a weak gravitational �eld is presented. Then we

implement an algorithm to calculate Schwarzschild coordinates of a GNSS user who receives

proper times sent by four satellites, knowing their orbital parameters; the inverse procedure

is implemented to check for consistency. The constellation of satellites therefore realizes

a geocentric inertial reference system with no a priori realization of a terrestrial reference

frame. We show that the calculation is very fast and could be implemented in a real GNSS,

as an alternative to usual post-Newtonian corrections. E�ects of non-gravitational pertur-

bations on positioning errors are assessed, and methods to reduce them are sketched. In

particular, inter-links between satellites could greatly enhance stability and accuracy of the

positioning system.

Details of the calculations are usually put in the appendices for the comfort of the reader.

The Mathematica algorithms are given in the appendices, and the codes written in Fortran

are publicly available on the website atlas.estec.esa.int/ariadnet.
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1Global navigation satellite

systems and Relativity

The classical concept of positioning systems for a Global Navigation Satellite System

(GNSS) would work ideally if all satellites and the receiver were at rest in an inertial reference

frame. But at the level of precision needed by a GNSS, one has to consider curvature and

relativistic inertial e�ects of spacetime, which are far from being negligible.

In this chapter we will present two very di�erent ways of including relativity in a posi-

tioning system: one way is to keep the newtonian conception of absolute time and space,

and add a number of corrections depending on the desired accuracy; another way is to use a

relativistic positioning system. This is a complete change of paradigm, as the constellation

of satellites is described in a general relativistic framework. This new scheme for positioning

could lead to numerous advantages: a very stable and accurate primary reference system,

which could be used for many areas of science such as geology, gravitational wave detection

or relativistic gravimetry.

1.1 The newtonian conception

The classical GPS In the newtonian theory space and time are absolute. Any pair of

event has a causal relation: simultaneity has an absolute character. The space-time can be

foliated with the hypersurfaces of simultaneous events (the space) by �xing the coordinate

time, e.g. t = t0. Then one can de�ne an absolute time interval between two instants, and

an absolute distance on the space. Let c be the speed of an electromagnetic wave in the

vacuum, and φ = −GM/r the gravitational potential of a central mass M , where G is the

gravitational constant and r the radial distance to the central mass. Then this conception

of space-time is a good approximation for an observer whose velocity v � c, and for a very

weak gravitational �eld |φ/c2| � 1.

In the newtonian space a user needs ideally the signals of three satellites to locate himself.

We assume that the clocks on board the three satellites Si (i = 1, 2, 3) and the clock of the

3



4 1. Global navigation satellite systems and Relativity

user are perfect. Each satellite sends an electromagnetic wave to the user, where the time of

emission ti of the signal is encoded. The user, having a clock, knows the time of reception tR
of the signal. Then he can deduce its distance with respect to the three satellites: c(tR− ti),
which is a direct consequence of the �nite speed of light. Therefore the user knows that he

lies on a sphere of radius c(tR−ti) centered on the satellite Si. The three spheres centered on
the three satellites intersect usually in two points, a problem easily solved with the method

of trilateration. Then the position of the user is usually taken as the point being the closest

to the surface of the Earth.

Let (x, y, z) be the cartesian coordinates of the user in the Euclidean space IR3, and

(xi, yi, zi) the coordinates of the satellite Si. We assume that the coordinates of the satellite

Si are known at the time of emission ti
∗. Then one has three unknowns and a system of

three equations:

(x− xi)2 + (y − yi)2 + (z − zi)2 = c2(tR − ti)2 , i = 1, 2, 3,

which can be solved by trilateration and gives 0, 1 or 2 solutions.

The clocks on board the satellites are atomic cesium clocks. They have an error of 1.2 ns

- for Galileo - after one day of operation (Waller et al. 2009). This leads potentially to an

error of about 35 cm after one day. However, the bad clock of the user - compare to the one

of the satellites - limits the precision of the positioning. It is then necessary to use other

methods to correct for the user clock. These methods use four or more satellites.

Suppose that you know only poorly the time of reception of the signal. Then you add

the time of reception t as an unknown of the problem, and add one satellite to have a fourth

equation. The unknown of the problem is the position of the user in the space-time (t,x,y,z)

and we have a system of four equations:

(x− xα)2 + (y − yα)2 + (z − zα)2 = c2(t− tα)2 , α = 1, 2, 3, 4.

This system can be solved numerically with an iterative method that we will present in

section 3.2, where only linear equations have to be solved.

Why include relativity? The theory of relativity (both special and general) teaches us

that space and time are not absolute. A pair of events has a causal relation only if one is in

the light cone of the other one. This has a lot of consequences on a GNNS, which is a�ected

in three ways:

• in the equations of motion of the satellites;
∗This is a delicate problem because for this one has to de�ne a global reference frame in which the orbital

parameters of the constellation of satellites are known. We will introduce this complication later.
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• in the signal propagation;

• in the beat rate of the clocks.

For the GPS and the future Galileo, only the clocks e�ects are measurable, but they exceed

largely the precision of the positioning system. The most important ones are:

• the gravitational frequency shift between the clocks (due to the local position

invariance principle);

• the Doppler shift of the second order due to the motion of the satellites (special

relativity).

The gravitational frequency shift implies that a clock runs faster when it is far away from

a center of gravitational attraction. The Doppler shift of the second order implies that a

clock in motion slows down. Then the clocks in the satellites will be slower than a clock on

the ground (for an observer who is at rest compare to the ground clock). These two e�ects

are opposite and have a net blue shift e�ect. These clocks e�ects imply an error of around

12 km after one day of operation, which is much more than the intended precision.

An order of magnitude The theory of general relativity is based upon the postulate of

the Einstein Equivalence Principle, which can be be separated in three sub-principles (Will

2006): the Weak Equivalence Principle, the Local Lorentz Invariance and the Local Position

Invariance (LPI). The LPI states that any local (non-gravitational) experiment is indepen-

dent of where and when in the universe it is performed. From this principle one can infer

that the proper time τ measured by a clock is given by (Will 1993)

c2dτ2 =

(
1− 2GM

rc2

)
c2dt2 − dr2 − r2dϕ2. (1.1)

For a circular orbit we have dr = 0, so that relation (1.1) can be written(
dτ
dt

)2

=

(
1− 2GM

rc2

)
− v2

c2
, (1.2)

where we de�ne v = r
dϕ
dt

the linear velocity. Let apply this formula for a clock in a satellite

S with proper time τS , and for a �xed clock on the Earth with proper time τR. Then the

equation (1.2) implies (
dτR
dτS

)2

=
1− 2GM

rRc2
−
v2R
c2

1− 2GM

rSc2
−
v2S
c2

. (1.3)
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We suppose that we are in a weak gravitational �eld and the velocities are little compare to

the speed of light. Then a �rst order approximation of the relation (1.3) leads to

dτR
dτS

= 1− GM

rRc2
−
v2R
2c2

+
GM

rSc2
+
v2S
2c2

.

For the Galileo constellation, we obtain

− GM

rRc2
+
GM

rSc2
= −5.4554 · 10−10,

− vR
2c2

+
vS
2c2

= +7.3715 · 10−11.

These numbers correspond to an error of about 12.2 km after one day of integration. The

error for the GPS is a bit smaller, about 11.7 km. This is because the GPS satellites are on

a slightly lower orbit than the Galileo ones, so the gravitational frequency shift is smaller.

A necessary change of paradigm Practically, the calculation is much more complicated

(see Ashby (2003) or Pascual-Sánchez (2007) for an extended review). The �GPS coordinate

time� tGPS is de�ned as the time of a clock at rest on the geoid. It has to be related to the time

t introduced in the equation (1.1), which can be interpreted as the time measured by a clock

in an inertial frame at spatial in�nity. Then one has to do transformations between the ECI

(Earth Centered Inertial system) and the ECEF (Earth Centered Earth Fixed system). The

orbital parameters of the satellite constellation are then expressed in the ECEF. To realize

the ECEF a network of ground stations receiving the GNNS signals has been installed. The

GPS uses the World Geodetic System 1984 (WGS-84); Galileo will use the Galileo Terrestrial

Reference Frame (GTRF) (Altamimi 2009). These global reference frames are �xed to the

Earth (via the ground stations) so their precision and stability in time are limited by our

knowledge of the Earth dynamics. The main e�ects are plate tectonic motions, tidal e�ects

on the Earth's crust and variations of the Earth rotation rate. In the WGS-84 the best

accuracy achieved is 30 cm (NIMA 2000), with an average stability of 4 cm/year (Altamimi

2009). The use of other space geodetic techniques - VLBI, SLR and DORIS - is necessary

to achieve a high precision ECEF. The International Terrestrial Reference Frame (ITRF),

maintained by the International Earth Rotation and Reference Systems Service, combine

e�ciently these four techniques to reach a stability of about 1 mm/year, inferior by a factor

of 10 to the science requirements (Altamimi 2009).

These considerations led Coll (Coll 2003) to propose the project �Système de Position-

nement Relativiste� (SYPOR), an alternative to the scheme of usual positioning systems.

The idea is to give to the constellation of satellites the possibility of constituting by itself

a primary and autonomous positioning system, without any a priori realization of a ter-
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restrial reference frame. This new positioning system leads to numerous advantages, among

which we can cite:

• a better understanding of the principles of positioning systems;

• the new coordinates de�ned are measurable directly (they are observer independent).

They constitute a physical coordinate system, which is not the case of the other coor-

dinate system. This open new possibilities in experimental physics and astronomy;

• it can be used for extra-terrestrial navigation with the use of pulsars as clocks;

• with the use of satellites interlinks, the reference frame is very precise and stable: it

could be used to detect gravitational waves and for high precision gravimetry and

geology;

• it is a primary reference frame which is not tied to the Earth: it is independent of the

Earth dynamics and continental drifts;

• the relativistic e�ects are already included in the de�nition of the positioning system,

so there is no need to synchronize the clocks.

1.2 The relativistic positioning system

The null-coordinates To de�ne a relativistic positioning system we have to introduce the

�null-coordinates�. They have been reintroduced recently by the works of Coll and Morales

(1991), Rovelli (2002) and Blagojevi¢ et al. (2002). They have di�erent names in the lit-

erature: �null-coordinates�, �emission coordinates�, �GPS coordinates�, �GNSS coordinates�.

In this report we will use the �rst name which is a reference to their geometrical proper-

ties. The de�nition of these coordinates is rather simple, but they are a very powerful tool

in general relativity. Let us de�ne four particles a = 1, 2, 3, 4 coupled to general relativity.

Their worldlines Ca are parametrized by their proper time τa. We choose a random origin for

τ = 0 on each world-line. Let P be an arbitrary event. Then the past null cone of P crosses

each of the four worldlines in τaP (see Fig.1.1). The quadruplet (τ1, τ2, τ3, τ4)P constitutes

the null-coordinates of the event P .

The protocol to de�ne null-coordinates can be seen in a di�erent way. The worldline Ca of
the particle a de�nes a one-parameter family of future null cones, which can be parametrized

by proper time τA (see Fig.1.2). The intersection of four future null cones τa from four

worldlines Ca de�nes an event with coordinates (τ1, τ2, τ3, τ4). A user receiving these signals

knows its position in this particular coordinate system.
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P

Ca

null (past) 
cone of P

particle a trajectory

t

y

x

O

τaP

Figure 1.1: De�ning null-coordinates with the
null past cone of a space-time event: let P be
an event in space-time. Ca is the worldline of a
test particle a parametrized by its proper time
τa; its origin O is in τa = 0. The past null
cone of the event P cross Ca at the proper time
τaP . With four di�erent particles with the world-
lines Ca (a = 1, 2, 3, 4), the past null cone of P
crosses the four worldlines in τ1P , τ

2
P , τ

3
P and τ4P .

Then (τ1, τ2, τ3, τ4)P are the null-coordinates of
the event P .

null (future) 

cones

particle a 

trajectory

t

y

x

P

Ca

τa1

τaP

Figure 1.2: De�ning null-coordinates with four
one-parameter families of null future cone: the
worldline Ca de�nes a one-parameter family of null
future cones. These null cones are hypersurfaces of
τa = constant. The intersection of four null cones
de�nes the event with coordinates (τ1, τ2, τ3, τ4).
The four particles can be chosen as four satellites
of a constellation of satellites, broadcasting their
proper time.

Properties of the null-coordinates The geometrical properties of the null-coordinates

(τa) are such that (see Coll and Pozo (2006) for an detailed article)

• expressed in this coordinate system, the components of the contravariant metric tensor

veri�es gaa = 0, where a = 1, 2, 3, 4;

• i.e. the four families of coordinate hypersurfaces τa = constant are null hypersurfaces.

They are covariant and completely independent of any observer (Lachièze-Rey 2006). They

de�ne a primary reference system: there is no need to attach them to a Terrestrial reference

system. If pulsars are used as clocks instead of the satellites clock, we have then a natural

reference frame for deep space navigation. Relativity does not need to be added as corrections

to these coordinates, as they are de�ned in a general relativistic framework. They are directly

measurable, a real assets for practical uses such as localization, motion monitoring, geology,

astrometry, cosmography and experimental gravitation.
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These coordinates depend on the set of four satellites ones chooses and their dynamics.

They are not �usual� coordinates, with one time and three space coordinates. However,

they can be linked to a terrestrial reference system by the usual techniques discussed in

the previous section. The conceptual di�culty does not lie anymore in the conception of

the primary reference frame but in its link with terrestrial reference frames. This allows to

control much more precisely all the perturbations that limit the accuracy and the stability of

the primary reference frame. Indeed, it is su�cient to know the e�ect of (non-gravitational

and gravitational) perturbations on the dynamics of the satellites in order to characterize

this primary reference frame.

Review of recent literature Coll and collaborators (Coll et al. 2006a,b) studied rela-

tivistic positioning systems in the case of a two-dimensional space-time for geodesic emitters

in a Minkowski plane and for static emitters in the Schwarzschild plane. A relativistic po-

sitioning system has been studied in the vicinity of the Earth: calculations were performed

to �rst order in a Schwarzschild spacetime (Bahder 2001; Ruggiero and Tartaglia 2008). A

�galactic reference system� has been studied, where timing signals received by four pulsars

were considered as null-coordinates (Coll and Tarantola 2003; Tartaglia et al. 2010). The

next generation of GNSS will have cross-link capabilities (Directorate of the Galileo Pro-

gramme and Navigation Related Activities 2009). Each satellite will broadcast proper time

to other satellites in view, as well as their proper time. With this information, one could

in principle map the spacetime geometry in the vicinity of the constellation of satellites by

solving an inverse problem (Tarantola et al. 2009).





2Schwarzschild space-time

The Schwarzschild space-time is a good approximation of the geometry around the Earth.

The local inertial coordinate system is tied to the center of the Earth and oriented into 4

mutually orthogonal directions t, X, Y , and Z.∗ The Schwarzschild space-time is usually

represented by the metric in spherical coordinates t, r, θ, and ϕ, such that X = r sin θ cosφ,

Y = r sin θ sinφ, and Z = r cos θ . In these coordinates the metric is

gµν =


−(1− 2M

r ) 0 0 0

0 1
1−2M/r 0 0

0 0 r2 0

0 0 0 r2 sin2 θ

 . (2.1)

We use natural units† c = G = 1. Geodesics are governed by the Hamiltonian:

H =
1

2

[
− 1

1− 2M
r

p2t +
(

1− 2M

r

)
p2r +

1

r2

(
p2θ +

1

sin2 θ
p2φ

)]
, (2.2)

which admits 8 constants of motion: value of Hamiltonian (H) and Lagrangian (L), con-

trolling the relation between time and distance, energy E = pt, the three components of

angular momentum (~l), longitude of periapsis (ω) and time of periapsis passage (tp). It is

convenient to introduce another local inertial (right-handed) orthonormal tetrad n̂, ê1 and

ê2 (c.f. Fig. 2.1), where n̂ is the constant unit vector pointing in the direction of the angular

momentum: ~l = ln̂. The two unit vectors ê1 and ê2 in the orbital plane are such that ê1
points in the direction of the initial perigee. The components of these vectors with respect

∗The Earth's local inertial coordinate frame is precessing with respect to the global inertial frame tied to
distant stars. The precessions are due to di�erent gravitational perturbations of Earth's multipole moments,
gravitational perturbations of the Moon, Sun and planets. These motions can be well modeled, but are not
the matter of this report.

†To recover usual units one can replace M = Gm⊕/c
2 when measuring distance andM = Gm⊕/c

3 when
measuring time, where m⊕ is the mass of the Earth in the usual units.

11



12 2. Schwarzschild space-time

Figure 2.1: The orbital plane in equatorial coordinates: n̂ unit normal, ι inclination, Ω
longitude of the ascending node, ω longitude of periapsis and λ true anomaly.

to the local Cartesian coordinate basis are expressed as:

ê1 = (cosω cos Ω− cos ι sinω sin Ω, cosω sin Ω + cos ι sinω cos Ω, sin ι sinω)

ê2 = (sinω cos Ω− cos ι cosω sin Ω,− sinω sin Ω + cos ι cosω cos Ω, sin ι cosω)

n̂ = (sin ι sin Ω,− sin ι cos Ω, cos ι) (2.3)

where Ω is the longitude of the ascending node and ι is the inclination of the orbit with

respect to the X − Y plane.

The only parameter changing along the orbit is the true anomaly (λ), which obeys the

di�erential orbit equation:

du
dλ

= ±
√
A2 − u2(1− u) +B(1− u) , (2.4)

where u = 2M/r, and A = 2ME/l and B = 2H(2M/l)2 are two constants of motion related

to orbital energy and orbital angular momentum. After (2.4) is solved for u as a function of

λ, the orbit can be described with

~r(λ) =
2M

u
(ê1 cosλ+ ê2 sinλ). (2.5)
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The spherical coordinates θ and φ along the orbit are expressed as∗ (�adeº and Gomboc

1996, Eqs. 6 � 16):

cos θ = sin ι sin(λ+ ω) (2.6)

tan
ϕ− Ω

2
=

cos ι sin(λ+ ω)

sin θ + cos(λ+ ω)
(2.7)

Time and proper time obey the following di�erential equations:

dt
du

=
2MA

u2(1− u)
√
A2 − u2(1− u) +B(1− u)

(2.8a)

dτ
du

=
2MA

E

1

u2
√
A2 − u2(1− u) +B(1− u)

. (2.8b)

The di�erential equations (2.4)-(2.8a) are formally the same for light-like (where B = 0)

and time-like orbits. However, solutions depend on the type of orbit, e.g. closed, scattering

or plunging (details in App. A). In the following sections we give solutions for closed time-

like orbits and scattering light-like orbits, which can be used to model satellites and photons

trajectory in a GNSS.

2.1 Time-like geodesics

GNSS satellites are on closed time-like orbits. After solving (2.4) for such case, we obtain

the orbit equation

u(λ) = U2 − (U2 − U3)cn2
(
K(ma) +

λ

2na

∣∣∣∣ma

)
, (2.9)

where U1, U2, U3 are the roots of the polynomial P (u) = A2− u2(1− u) +B(1− u), and na
and ma are functions of them. K and cn are the complete elliptic integral of the �rst kind

and Jacobian elliptic function respectively. The true anomaly λ is de�ned as in the Keplerian

case; at periapsis it has values λp = 4naK(ma)k, where k is an integer; U2 and U3 are related

to the radii of the periapsis rp = 2M/U2 and apoapsis ra = 2M/U3 respectively. Obviously,

for circular orbits U2 = U3, and the orbit equation reduces to r = const. = ra = rp. The

numerical procedure to calculate space-time position on the orbit is given in the App. A.1

and App. B on page 46.

Schwarzschild time (A.12) and proper time (A.13) along the orbit are obtained by inte-

grating equations (2.8a) � (2.8b). The solutions of time-like geodesic equation are illustrated

∗Note that sin θ = +
√
1− cos2 θ.
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Figure 2.2: Left: A time-like orbit with semi-major axis a = 500 rg and eccentricity ε = 0.3.
Middle: Time (black) and proper time (red) for the same orbit. Right: The di�erence
between time and proper time for the same orbit. All values of r, t, and τ are in units of M .

in Fig. 2.2. Orbital parameters were intentionally chosen such that relativistic e�ects are

clearly visible, i.e. periapsis precession and the di�erence between time and proper time.

For the values of orbital parameters of the Galileo satellites, the di�erence between

coordinate time and proper time goes up to 10 µs per orbit.

2.2 Light-like geodesics

In the eikonal approximation, electromagnetic signals sent by satellites follow null scattering

geodesics. After solving (2.4) with B = 0 for such cases, we obtain the orbit equation

u(λ) = u2 − (u2 − u3)cn2
(
K(m) +

λ

n

∣∣∣∣m) , (2.10)

where the true anomaly λ takes values on the interval λ ∈ (F(χmax|m)−K(m),F(χmin|m)−
K(m)). Here χmin = arccos

(√
u2/(u2 − u3)

)
, χmax = arccos

(
−
√
u2/(u2 − u3)

)
, F is the

elliptic integral of the �rst kind, and u1, u2, u3 are the roots of the polynomial P (u) =

A2 − u2(1 − u). The constants u1, u2, u3, m, n depend only on one constant of motion -

A = 2ME/l, which is the inverse of the impact parameter (see App. A.2).

Coordinate time (A.19) as a function of λ is obtained by integrating Eq.(2.8a) with

B = 0. In the case of GNSS the gravitational �eld is very weak, so photon orbits are

essentially straight lines. Di�erences between the relativistic and non-relativistic time-of-

�ight are of the order of 1 ns when considering a signal traveling from a satellite to the

user.

In order to de�ne null-coordinates, one needs to �nd the time-of-�ight of a photon con-

necting two given events Pi = (ti, xi, yi, zi) and Pf = (tf , xf , yf , zf ). To do this, we follow

�adeº and Kosti¢ (2005, hereafter �K05).
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DΛ

Pi P f

Figure 2.3: Testing the time-of-�ight routine
in highly curved space-time. The calculated
orbit is shown in red.

2.3 Ray-tracing

The constants of motion describing light-like geodesics are A = 2ME/l, n̂, and ω, where

l and E are orbital angular momentum and energy respectively, n̂ is the direction of the

angular momentum, and ω the longitude of the periapsis. Since orbits are planar, n̂ of an

orbit going through Pi and Pf is automatically calculable from these data. Undetermined

remain only the constants A and ω. Writing the orbit equation at Pi and Pf , we obtain

two non-linear equations for these two non-trivial constants of motion. However, since the

longitude of the periapsis occurs only linearly as the argument of elliptic functions, it is

possible to use elliptic functions addition theorem to eliminate the longitude of the periapsis

and obtain a single non-linear equation for the orbital parameter A, as a function of initial

and �nal coordinates, i.e. ri, rf , and ∆λ, where ri and rf are the distance of the emitter

and the receiver from the centre of the Earth, and ∆λ is the angle between the vectors

corresponding to ~ri and ~rf .

This method is described in App. A.3 and the numerical procedure on page 50. Once the

value of this parameter is known, it is straightforward to get the time-of-�ight ∆t between

the initial and the �nal point

∆t = t|λ=λf − t|λ=λi , (2.11)

where the times t at points with λ = λf and λ = λi on the light-like geodesic with previously

determined A are calculated as described in App. A.3.

An example of orbit determination from ∆λ, ri, and rf is shown in Fig. 2.3.

In the case of the Galileo constellation, the delay due to bending of the light ray goes up

to 1 ns.





3Numerical algorithms

We assume that the positions of all satellites as functions of time and their proper time are

exactly calculable, i.e. given the proper time τi of the i-th satellite, we can exactly (to any

precision required) calculate the four space-time coordinates (ti, xi, yi, zi) of this satellite.

The coordinates (ti, xi, yi, zi) are referred to the common Schwarzschild coordinate system

centred at the centre of the Earth. An observer who wants to determine his position in space-

time (to, xo, yo, zo) receives proper time signals from four (or more) satellites that constantly

broadcast the time from their proper time clocks. At the moment of reception, the four time

signals received are (τ1, τ2, τ3, τ4) (see section 1.2).

During this study, we developed two algorithms:

1. An algorithm that calculates null-coordinates (τ1, τ2, τ3, τ4) from space-time coordi-

nates (to, xo, yo, zo) of an observer (or a receiving satellite).

2. And the �reverse� algorithm that calculates space-time coordinates (to, xo, yo, zo) of an

observer (or a receiving satellite) from its null-coordinates (τ1, τ2, τ3, τ4).

The combination of the two algorithms can be used to test their accuracy in the following

way: if the �rst algorithm is used to calculate null-coordinates and then the second one

to calculate Schwarzschild coordinates from these null-coordinates, i.e. (to, xo, yo, zo) →
(τ1, τ2, τ3, τ4) → (t′o, x

′
o, y
′
o, z
′
o), the resulting Schwarzschild coordinates should be the same

as the ones that were used in the �rst algorithm, i.e. (t′o, x
′
o, y
′
o, z
′
o) = (to, xo, yo, zo).

3.1 Calculating null-coordinates from Schwarzschild coordi-

nates

If the constants of motion for all satellites are known, it is possible to calculate their positions

and times for any value of the true anomaly λ. A user at point Po = (to, xo, yo, zo) receives the

signals from four satellites, which sent their signals at points Pi = (ti, xi, yi, zi) determined

17
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Figure 3.1: Determining null-coordinates from
Schwarzschild coordinates. Point of receiving
the signal is marked with Po. The point of
emission Pi has to be determined by connect-
ing the two points with a light-like geodesic
(diagonal line). For clarity, only one spatial
coordinate is shown.

by λi. The null coordinates of the user at Po are the proper times τi (i = 1, ..., 4) of the

sending satellites at Pi (see Fig. 3.1).
Since the proper time τi depends on the true anomaly λi, we calculate λi at the emission

point Pi from the equation that connects Po and Pi with a light-like geodesic

to − ti(λi) = Tf (~Ri(λi), ~Ro) , (3.1)

where ~Ri = (xi, yi, zi) and ~Ro = (xo, yo, zo) are respectively the spatial vectors of the sending

satellite and the receiving user. The function Tf calculates the time-of-�ight of photons

between Po and Pi as described in full detail in Sec. 2.3 and App. A.3. Since ti and ~Ri are

functions of λi only, the above equation is an equation for λi and can be very e�ciently solved

by known numerical algorithms, e.g. Newton method. Once the value of λi is determined,

it is straightforward to calculate proper time of emission τi from (A.13) and (A.14) for each

sending satellite and thus obtain the four null-coordinates of the user at Po = (τ1, τ2, τ3, τ4).

3.2 Calculating Schwarzschild coordinates from null-

coordinates

Here we solve the inverse problem: calculate Schwarzschild coordinates of the event Po from
(τ1, τ2, τ3, τ4) sent by the four satellites. As we assume that the constants of motion of all

satellites are known, we can deduce their space-time positions Pi = (ti, xi, yi, zi) from proper

times τi. Events Pi = (ti, xi, yi, zi) and Po = (to, xo, yo, zo) are connected with light-like
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Figure 3.2: The four green points represent the four satellites at ~Ri and the red point is the
user.

geodesics. In a �at space-time, they solve the four equations

to − ti =
√

(xi − xo)2 + (yi − yo)2 + (xi − xo)2. (3.2)

These four equations can be solved for (to, xo, yo, zo) by a geometric construction. Let
~Ri = (Xi, Yi, Zi) be the spatial coordinates vectors of the satellites at Pi. The situation is

illustrated in Fig. 3.2, where the four green points represent the four satellites at ~Ri and the

red point is the user.

The 4 spheres centred at ~Ri have radii (to−ti). Thus, the user is at the intersection of the
four spheres. To �nd his position, we proceed as follows: suppose that the observer's dead

reckoning coordinates are (t
(0)
o , x

(0)
o , y

(0)
o , z

(0)
o ). The radii of the four spheres centred at ~Ri

would then be (t
(0)
o − ti). In general, these four spheres have no common point. However, the

dead reckoning position can always be chosen in such a way that any two spheres intersect.

Consider the planes de�ned by the circle of intersection of sphere 1 and 2 and sphere 3 and

4. These two planes generally intersect along a straight line; call it line 1. Next consider

the intersection of spheres 1 and 3, and spheres 2 and 4. The corresponding planes intersect

along a straight line called line 2. If (3.2) is satis�ed, then line 1 and line 2 intersect at the

position of the user. However, since (t
(0)
o , x

(0)
o , y

(0)
o , z

(0)
o ) is not yet the solution of (3.2), the
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lines 1 and 2 generally bypass each other. We calculate the positions on both lines where

they meet at closest distance. The geometrical centre of the two positions is taken as the

better approximation for the spatial position of the observer ~R(1)
o , and the distance between

the two points of closest passage (d~P ) is a measure of how close we are to the solution. In

the next step, we repeat the procedure with a slightly di�erent to to �nd the derivative of d~P

with respect to to. This derivative is then used in Newton's method to �nd a new t
(1)
o with

a smaller d~P . With this value a new spatial position ~R
(2)
o is calculated and the procedure

is repeated until d~P becomes less than the value prescribed by the accuracy requirement.

After n steps (n ∼ 5), the procedure converges to
{
t
(n)
o , ~R

(n)
o

}
, the solution of (3.2). Note,

however, that a unique solution exists only if the normals to all planes whose intersections

de�ne lines 1 and 2 do not lie in a plane, i.e. if the four satellites do not lie in one plane.

However, eq. (3.2) does not take into account the gravitational time delay and the bending

of light, so our result is not exact. For realistic positions of Galileo satellites the position

error is a few 10−9 orbital radii, i.e. a few centimetres. The �nal correction to the position

is made by solving the relativistic equations of light propagation from the satellites to the

user in the following form:

to − ti = Tf (~Ri, ~Ro) , (3.3)

where Tf (~Ri, ~Ro) calculates the coordinate time for the light to travel from ~Ri to ~Ro. Tak-

ing
{
t
(n)
o , ~R

(n)
o

}
as an initial approximation, we use a generalization of the classical stellar

navigation solution to solve (3.3). This equation is written in the form:

t(n)o + dt− ti = Tf (~Ri, ~R
(n)
o + d~R)

= Tf (~Ri, ~R
(n)
o ) + ~∇oTf (~Ri, ~R

(n)
o ) · d~R+O(d~R2), (3.4)

where ~∇o is the gradient with respect to the position of the user ~Ro. We now assume that

the gravitational �eld is weak, i.e. |M/R| � 1. Then

Tf (~Ri, ~Ro) = |~Ro − ~Ri|+O(M)

and

~∇oTf (~Ri, ~Ro) =
~Ro − ~Ri

|~Ro − ~Ri|
+O(M/R)

= ûi +O(M/R), (3.5)

where ûi is the unit vector pointing from satellite i to the supposed position of the user.



3.3. Accuracy and speed of the algorithms 21

Figure 3.3: The orbits of 4 satellites
around the Earth. The satellites at ini-
tial positions are marked with black dots,
and the observer on Earth's surface with
a red dot. Green sphere represents the
Earth. The sizes of satellites are not to
scale.

satellite Ω [◦] ω [◦] ι [◦] a [rg] ε tp [rg/c]

1 0 0 45 5× 109 1.1× 10−9 0
2 30 5 45 5× 109 1.1× 10−9 0
3 60 10 45 5× 109 1.1× 10−9 0
4 90 15 45 5× 109 1.1× 10−9 0

Table 3.1: Orbital parameters for 4 satellites: longitude of ascending node (Ω), longitude of
perigee (ω), inclination (ι), major semi-axis (a), eccentricity (ε), and time of perigee passage
(tp).

Eq. (3.3) now becomes a set of four linear equations for dt and the three components of d~R:

t(n)o − ti − Tf (~Ri, ~R
(n)
o ) = −dt+ ~u

(n)
i · d~R. (3.6)

The error of the corrected position decreases by 6 to 9 orders of magnitude � bringing the

Galileo position error to the order of micrometers. If necessary, this error can be decreased

even further by solving (3.6) again with t(n+1)
o = t

(n)
o + dt and

~R(n+1)
o = ~R(n)

o + d~R . (3.7)

The implementation of this algorithm in the language of Mathematica is shown in

App. B.

3.3 Accuracy and speed of the algorithms

The above algorithms were tested in a simulation of 4 satellites Si (i = 1, ..., 4) in orbit

around the Earth communicating with a static user on the Earth's surface∗. The only input

parameters are the orbital parameters of the four satellites (table 3.1) and the coordinates

of the user. The orbits for the four satellites are illustrated in Fig. 3.3. The Schwarzschild
∗The problem of the atmospheric perturbations is not in the scope of this paper.



22 3. Numerical algorithms

coordinates of the user are

ro = 1.595 · 109 M , θo = 43.97◦ , φo = 14.5◦.

The simulation runs in the following way. At every time-step

t(n) = t(n−1) + ∆t , n = 2, 3...,

where ∆t = 6 · 1012 M and n counts the time-steps of the simulation:

1. We calculate null coordinates (τ
(n)
1 , τ

(n)
2 , τ

(n)
3 , τ

(n)
4 ) of the user from his Schwarzschild

coordinates (t(n), x
(n−1)
o , y

(n−1)
o , z

(n−1)
o ), as described in Sec. 3.1. (For n = 1 we choose

(t(1), x
(0)
o , y

(0)
o , z

(0)
o ) = (0, ro, θo, φo)).

2. From previously calculated null coordinates (τ
(n)
1 , τ

(n)
2 , τ

(n)
3 , τ

(n)
4 ), we calculate

Schwarzschild coordinates (t
(n)
i , x

(n)
i , y

(n)
i , z

(n)
i ) for every satellite Si at its new po-

sition τ (n)i by numerically solving the equation τ(λ
(n)
i ) = τ

(n)
i for λ(n)i .

3. From these Schwarzschild coordinates (t
(n)
i , x

(n)
i , y

(n)
i , z

(n)
i ), we calculate Schwarzschild

coordinates (t
(n)
o , x

(n)
o , y

(n)
o , z

(n)
o ) of the user as described in Sec. 3.2.

The numerical code of this simulation is written in Fortran 90 and is publicly available on

the website atlas.estec.esa.int/ariadnet. This code can be easily generalized to include

a moving user, more satellites or communications between all the satellites.

Accuracy

The accuracy of these algorithms is tested by comparing the initial Schwarzschild coordinates

of the user with his Schwarzschild coordinates calculated at each time step. As the user is

static, his coordinates (xo, yo, zo) should be constant during the simulation.

In table 3.2 we show the relative errors of all the coordinates, de�ned as

ε
(n)
t =

t(n) − t(n)o

t(n)
(3.8)

and

ε(n)x =
x
(1)
o − t(n)o

x
(1)
o

, ε(n)y =
y
(1)
o − t(n)o

y
(1)
o

, ε(n)z =
z
(1)
o − t(n)o

z
(1)
o

. (3.9)

The relative error of the coordinate t is ∼ 10−32, and relative errors of the coordinates x, y,

and z are few orders of magnitude larger, i.e. ∼ 10−25 − 10−27 (see table 3.2). In this table

we also show the determinant det of the matrix, which is used for calculating the space-time

coordinates.
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n εt εx εy εz det

430 1.93758E-32 -6.15473E-27 -7.34498E-26 -4.86318E-26 1.72246E-003
431 -2.99206E-32 -1.78472E-26 -7.64415E-26 1.84489E-25 1.59076E-003
432 -1.46740E-31 -4.82243E-26 -1.13881E-25 7.31360E-25 1.46187E-003
433 -1.72335E-32 -1.09471E-26 -7.03668E-26 1.27280E-25 1.33591E-003
434 -1.01827E-32 -7.65914E-27 -5.69550E-26 9.27816E-26 1.21302E-003

Table 3.2: Relative errors of the coordinates as de�ned in (3.8) � (3.9), for the last �ve time-
steps of the simulation, which is equivalent to more than one orbit of the satellites. The
determinant det of of matrix used for calculating space-time position is also shown in the
last column.

The algorithm for determining Schwarzschild coordinates from null coordinates (Sec. 3.2)

works only if the four satellites are not in the same plane, i.e. the determinant det must be

non-zero. The opposite may happen during a simulation in which case the resulting position

has a very large error or is left undetermined. As an example, we show in table 3.3 relative

errors where the positions cannot be determined for a given con�guration of the satellites,

which is re�ected in the close-to-zero negative values of det, as well as in a jump in the

relative errors from ∼ 10−31 to ∼ 10−2 for the coordinate t, and from ∼ 10−25 to ∼ 10+3 for

the coordinate z. In the case of GNSS satellites such a situation should never occur, since

there are always more than four satellites visible and it should always be possible to choose

four that do not lie in the same plane.

n εt εx εy εz det

7 -1.11018E-30 3.21695E-27 -8.46151E-26 1.88565E-25 5.81128E-003
8 -9.83688E-31 3.86661E-27 -9.02631E-26 2.02826E-25 5.85868E-003
9 -9.29760E-31 3.02395E-27 -8.94093E-26 2.02005E-25 5.90283E-003
10 -5.15060E-02 -7.85972E+02 -7.40892E+01 -2.31309E+03 -3.37037E-014
11 -1.51029E-02 -2.56711E+02 -2.44827E+01 -7.56241E+02 -2.95362E-012
12 -9.12949E-03 -1.71063E+02 -1.66154E+01 -5.04159E+02 -1.49617E-011

Table 3.3: Relative errors for a planar con�guration of satellites and the determinant det of
matrix used for calculating space-time position.

Speed of calculations

The simulation was tested on a PC with an Intel Core2 Quad CPU Processor Q6600 at 2.4

GHz and 4GB RAM. The OS was Linux x86_64 with kernel 2.6.28-18-generic, with the Intel

Fortran Compiler 10.1. The maximum number of time-steps is nmax = 434, equivalent to

more than one orbit of the satellites. The calculation for steps 1 to 3 described above repeated

434 times (i.e. for 434 time-steps) takes 67.6 seconds to execute (0.1558 seconds/time-
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step). The time of calculation for steps 2 and 3 (repeated 434 times) is 26.6 seconds (0.0682

seconds/time-step). These two steps are actually the ones that the users will perform to

determine their positions.

The simulation was also tested on a laptop with an Intel Core2 Duo CPU Processor

P8600 at 2.4 GHz and 4GB RAM. The OS is the same as before, but with the Intel Fortran

Compiler 11.1. In this case, some processor-speci�c compiler optimizations are enabled. The

maximum number of time-steps is the same as before: nmax = 434. The time of calculation

for steps 1-3 described above repeated 434 times (i.e. for 434 time-steps) is 61.9 seconds

(0.1426 seconds/time-step). The time of calculation for steps 2 and 3 (repeated 434 times)

is 26.5 seconds (0.0588 seconds/time-step).

In both cases, a 25 � 32-digit accuracy is achieved when determining the space-time

position of the observer.



4Non-gravitational perturbations

The important non-gravitational perturbations are those governed by stochastic noise, i.e.

by phenomena that cannot be predicted in advance. Clock noise, solar radiation pressure,

solar wind pressure and collisions with interplanetary dust particles are sources of such noise.

The nature of these forces and also the nature of the uncertainty in knowing their magnitude

and direction is quite di�erent.

Clock errors a�ect the position determination by giving false information on the time of

�ight from the satellite to the observer. Assuming that a typical clock error can be described

as �icker noise with a standard deviation error of 1 ns/day, we can assign a displacement

error of dt =0.3 m per day to stochastic clock perturbations.

Solar radiation pressure produces a force

~Frp =
(

1 + (η − 1)a
)
· L�

4πr3c
~rA, (4.1)

with ~r the radius vector from the Sun to the satellite, A the cross section of the satellite

from the impinging direction, a the e�ective albedo of the satellite (generally depending on

the angle of incidence of solar light on the satellite) and η a tensor attached to the satellite,

measuring the e�ective momentum of re�ected light. If a, η and A were constants, the e�ect

could be calculated very precisely, since the solar luminosity is a well known constant. In this

case the main e�ect of solar radiation pressure is a precession of orbital angular momentum

with angular velocity
~Ωrp =

1

ml
~l × ~Frp

Ωyear

ω2
srs

, (4.2)

where Ωyear is the angular velocity of the solar radiation force with respect to the orbital

angular velocity of a satellite, i.e. Ωyear ' 2π
1 year , ωs = 2π

Ps
(Ps ∼ 1

2 day) is the orbital angular

velocity of the satellite and rs is the distance of the satellite from the center of the Earth.

This e�ect, schematically shown in Fig. 4.1, makes the orbital angular momentum oscillate

with the orbital period of the Earth around the Sun. The displacement of the satellite's

25
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Figure 4.1: As the Earth (blue sphere) moves about the Sun (yellow sphere), solar radiation
pressure makes satellite's orbital angular momentum precess so that the tip of the orbital
angular momentum follows the red ellipse; the gray circle showing where the tip of angular
momentum would be with no precession.

position due to solar radiation pressure as a function of time can be written as

drp =
Frp

4π2m
P 2
s sin (Ωyeart) cos(ωst+ δ). (4.3)

The amplitude of this term can be considered as a measure of solar radiation strength. If

we assume the satellite to have a mass of 600 kg, the cross sectional area of 0.5 m2 and take

F� = 1300 W/m2 for the solar constant, we obtain drp ∼ 0.17 m. The realistic e�ect of solar

radiation pressure is somewhat more complicated, since a, η and A depend on the orientation

of the satellite with respect to the direction to the Sun. It is probably safe to assume that

this dependence can be known to better than 1% or maybe even 0.1% in which case the

unpredictable stochastic part of the e�ect of solar radiation pressure would be always below

milimeters.

The perturbing force due to solar wind pressure is similar to the radiation pressure force,

since it originates from the same direction, only the pressure term L�
4πr3c

~r must be replaced by
Ṁ

4πr2
~v, where Ṁ and ~v are solar wind mass loss rate and velocity. Their typical values found

in literature are: Ṁ ∼ 4×1019 g/year and v ∼ 500 km/sec. Using these numbers we deduce

that solar wind pressure is about 200 times weaker than solar radiation pressure. Because of

this weakness it may not be important at this point to be able to determine the uncertainty

in the solar wind albedo and the equivalent of η. It is certainly not as important as �nding

the truly stochastic part of solar wind, which is the force of coronal mass ejections hitting the

satellite. Coronal mass ejections are violent outbursts from the solar surface, occurring every

few days and carrying away masses 1014 to 1016g at speeds up to 5000km/sec (Landi et al.

2010; Zhang et al. 2010). We calculate the momentum received by the satellite (δp) from

impinging material by assuming that the coronal mass �ow is spread evenly in a spherical
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shell moving away from the Sun∗. From this we obtain the velocity change of the satellite

(δv = δp/m), so that the displacement after one day follows: dcme = δp
m1 day. Using the

largest numbers quoted, we obtain an estimate dcme ∼ 0.0003 m for the purely stochastic

part of solar wind displacement a day after the coronal mass ejection.

A relatively small non-gravitational perturbation, but completely stochastic in nature

is produced by collisions of satellites with interplanetary dust. Our estimates of these per-

turbations are based on data from the article (Nesvorný et al. 2006), which studies dust

bands Karin and Veritas (Nesvorný et al. 2006). The authors claim that these dust bands

contribute from 30 to 50% of all interplanetary dust in the near Solar system. They con-

tribute 15000 to 20000 tons per year in dust accretion rate to the whole Earth. We assume

that in the vicinity of the Earth the dust accretion is aproximately isotropic and that it is

proportional to the accreting area (4πR2 = 4A = 2m2). Taking 36000 tons per year as the

total mass accretion rate on the Earth, we thus estimate the dust accretion rate per satellite

to 1.4 × 10−4g/year. In this way we come to the following main conclusions: solar system

dust presents a very mild drag resistance to satellite motion around the Earth. The typical

orbital decay time scale is of the order of ∼ 3 × 109years. The stochastic component is

contributed mostly by collisions with 100-200µm dust particles which move with respect to

the Earth (and with respect to satellites) with the average velocity ∼ 17km/sec and occur

with a probability of less than one per year. The velocity change due to such a collision

is δvdust ∼ 5 − 20 × 10−8m/sec. The displacement of a satellite due to such a collision

observed after one day would amount to ddust '5-20mm . Note that such collisions could be

detected and their impact measured if satellites would monitor their mutual positions, since

the probability for more than one collision to occur during the same day is so small.

It is di�cult to compare the strength of these so di�erent non-gravitational perturbations

without more extensive data on their character, changing strength and without carefully

considering statistical properties of these noise sources. Such a study would go beyond the

scope of this report and may not even be very useful before it could be veri�ed experimentally.

To make a very rough comparison of importance of each of the listed perturbations, we assign

to each perturbation a �force� and a displacement/day. As the worst case we simply use the

full perturbing force to calculate the displacement of a satellite after one day. For example

we use Frp = L�
4πr2c

A for the force of solar radiation pressure and assign it the displacement

as d = 1
2
Frp

m t2 (t = 1day). As explained above, this is a gross overestimate, at least in

the case of solar radiation pressure or solar wind pressure. We attempt to re�ne such noise

upper limit by estimating only the stochastic part of 1-day position error, i.e. the error

remaining after the known part of the perturbing force has been taken into account with
∗This is certainly not a realistic assumption with respect to each single event, but may not be so bad on

long term average.
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best available data. Our estimates are given in Table 4.1. The reader should be aware of

Table 4.1: Nongravitational noise sources
perturbation magnitude displacement/day stochastic component
clock noise 1ns/day - 0.3m

radiation pressure 4.3×10−6Nm−2 13m <0.001m?
solar wind pressure 2.2×10−9Nm−2 0.007m ∼ 0.0003m?

dust collisions ∼ 100µm part - ∼ 0.00005m

the large uncertainty involved in these estimates.

Dust collision di�er from all other perturbations considered by their very low probability

rate. Their per day displacement in Table 4.1 is thus just a very long term average. A more

detailed table of collision probabilities and displacements, in this case per year, is listed in

Table 4.2.

Table 4.2: Dust particle collision probabilities
size [µm] collisions per year displacement/year [m]
67-114 0.67 0.8-4
114-144 0.35 4-8
144-166 0.17 8-12
166-182 0.08 12-16
182-196 0.05 16-20
>196 0.17 >20

Even if the above estimates are very rough, it is clear that timing noise is by far the

most important noise source that must be controlled on a longer time scale by other means

as for example telemetry from the ground. It is worth pointing out, however, that the non-

gravitational perturbations, apart from the slow drag mentioned above, do not systematically

change orbital momentum of satellites (after all the precessions due to other gravitational

perturbations have been properly taken into account). This means that the area swept by

the radius vector from the center of the Earth to each satellite can be a clock with very good

long term phase stability limited in principle only by the uncertainty in swept area. It would

be possible to use the timing capability of the constellation of satellites, if each satellite was

capable of detecting the timing signal of all other visible satellites and use it, just like any

other observer, to determine its own space-time position.



Conclusion

In this study we explore the possibility of using the global navigation system to map the

space-time around the Earth, as well as the possibility that such an approach could improve

the accuracy and longer range autonomy of the global positioning system. The study focuses

on the use of general relativistic null-coordinates as natural observer independent coordinates

which are automatically realized by radio wave communications from satellites to GNSS users

and by radio communications between satellites themselves.

The use of null-coordinates is realized in the local Schwarzschild coordinate system with

three spatial orthonormal directions ei and one time-oriented vector e0, with coordinates

X,Y, Z, t. Before taking into account gravitational perturbations due to the Moon, Sun,

planets, obliquity and rotation of the Earth . . . , this local coordinate system can also be

considered as a global inertial system, i.e. oriented in �xed directions with respect to distant

stars. Since the main e�ect of gravitational perturbations is to make the local Schwarzschild

frame precess about di�erent axes determined by orbits of perturbing bodies and these pre-

cessions are very slow, the local Schwarzschild coordinate frame can to a high degree of

accuracy be considered as inertial (Precessions are also accompanied by much faster nuta-

tions, however with much smaller amplitudes, amounting to only a few meters). Due to this

fact it is possible to decouple the problem of motion in the local Schwarzschild frame from

the problem of connecting the local Schwarzschild frame to the global inertial frame. This

second problem is well understood in the framework of classical non-relativistic gravitational

perturbation theory, but is not the subject of this study. Here we concentrated on �nding

algorithms to describe the dynamics ob bodies in the local Schwarzschild frame in full gen-

eral relativity, in de�ning null-coordinates in space-time that are tied to the constellation of

satellites and in reading these coordinates in order to determine the Schwarzschild coordi-

nates of an event in space-time. Thus, we have tackled the tasks de�ned at the negotiation

meeting and obtained the following results:

• Analytic solutions for light-like (open) and time-like (closed) geodesics were derived

and cast into a form suitable for calculations in the limit of weak gravitational �elds.

The transition of these expressions to the newtonian limit has also been checked and

veri�ed numerically. It has been con�rmed that in the case of Galileo satellites relative

29
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di�erences between classical and relativistic solutions amount to relative di�erences of

the order of 10−9 per orbit, which is consistent with post-newtonian predictions.

• We de�ned two algorithms:

a) an algorithm that calculates null-coordinates (τ1, τ2, τ3, τ4) corresponding to

local Schwarzschild coordinates (to, xo, yo, zo) of an observer (or a receiving satellite),

b) and the �reverse� algorithm that calculates space-time coordinates (to, xo, yo, zo)

of an observer (or a receiving satellite) from its null-coordinates (τ1, τ2, τ3, τ4).

• For proof of concept the two algorithms have been �rst written in Mathematica. These

codes have a compact logical structure that makes them relatively simple to read, but

are too slow in execution and are thus not suitable for extended cross tests.

• The algorithm (a) has also been written in Fortran and C++ . The two codes have

been tested against each other. The algorithm (b) has been written in Fortran too

and checked against the �rst algorithm for consistency. All codes have been optimized

for weak gravitational �elds. The codes have been tested for speed on a PC with a

quad-core CPU, and a laptop with a dual-core CPU. It takes ∼ 0.06− 0.7 seconds to

determine all four coordinates at 25 � 32-digit precision. This makes our codes feasible

and could be used in modern positioning devices.

• E�ects of non-gravitational perturbations have been studied. We focused mainly on

the stochastic part of these perturbations. Clock noise has been identi�ed as the most

important contributor a�ecting the accuracy of position determination. By magnitude

the second perturbing force is the solar radiation pressure. We note, however, that

this force is very stable and could, at least in principle, be modeled to very high

precision. Therefore, its stochastic e�ect is not expected to contribute signi�cantly

more to position noise than the remaining two truly stochastic perturbations: solar

wind pressure and collisions with interplanetary dust. We also note that stochastic

forces have no preferred direction, therefore they are not expected to change average

values of orbital angular momenta of satellites. This means that areal velocities of

satellites are good constants of motion perturbed only by deterministic gravitational

perturbations. Therefore we suggest that the area covered by the radius vector from

the center of the Earth to satellites be used as a stable measure of proper time of this

satellite.

We believe to have shown that the use of fully relativistic code in GNSS systems o�ers

an interesting alternative to using post-Newtonian approximations. The code written and

tested executes a position �nding algorithm in about 60 ms on a normal laptop computer
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if the initial position is completely unknown and a few times faster if the algorithm starts

from a tighter dead reckoning position. This proves that the more consistent relativistic

formalism presents no technical obstacle for use in modern global positioning devices. The

advantages of using a fully relativistic code over the use of classical post-newtonian codes go

well beyond aesthetics. Since stochastic perturbations on the constellation of satellites are

small, the constellation can be given greater autonomy in de�ning its own local Schwarzschild

frame in which the predictability of dynamics can be taken advantage of. In particular the

long term clock drifts can be corrected by using orbital area as a uniformly increasing proper

time coordinate. In this system the angular velocities of slow precessions between the local

Schwarzschild frame and the global inertial frame give precise data on the local space-time

metric.

Finally, we would like to argue that the concept of autonomy of the constellation of satel-

lites, that emerged from this study, deserves further attention. It o�ers increased accuracy

and long term stability to the global positioning system, as well as promises us a tool for a

systematic study of the metric of the space-time around the Earth, which can also give us a

deeper insight into what is going on inside the Earth. In order to realize such an autonomous

constellation, it must be self-consistent. By this we mean that if satellites determine their

orbits by using positioning data from other satellites in the constellation, they should ob-

tain the same constants of motion that were used in the de�nition of the global positioning

system. Such self-consistency at the maximum level of precision is not obvious, but can be

reached if each satellite is also a receiver of timing signals of all other satellites. We believe

we can design a mathematical procedure to drive any initial GNSS solution toward the best

self consistent solution.





AEquations in Schwarzschild

space-time

Starting with the results of Chandrasekhar (1992) and Rauch and Blandford (1994), who

expressed the solutions to geodesic equations in terms of elliptic integrals and by invert-

ing their expressions into Jacobi elliptic functions (�adeº et al. 1998), simpler solutions of

geodesic equations are obtained (Gomboc 2001). Such solutions, which no longer contain

the branch ambiguity, are presented here.

The solutions exist only as long as P (u) ≥ 0, where P (u) = A2− u2(1− u) +B(1− u) is

the polynomial in (2.4), and depend on the three roots of P (u). The discriminant D, which

is de�ned as:

α = 1− 9B − 27

2
A2 (A.1)

β = −1− 3B (A.2)

D = α2 + β3 , (A.3)

determines the nature of the roots of P (u). Since the orbits extend at most from u = 0 to

u = 1, only the roots on this interval are of interest. The roots and four possible orbit types

are shown in Fig. A.1.

A similar overview of orbits can be obtained by comparing the energy E against the

e�ective potential V (Misner et al. 1973), since the orbits can exist only if E ≥ V . For

time-like geodesics, the e�ective potential V is de�ned as:

V =

√
(1− u)(1 + l̃2u2) (A.4)

and depends on the reduced angular momentum l̃ = l/2M . The orbit types for l̃ = 2.2 and

di�erent values of E are shown in Fig. A.2 (left). Since light-like geodesics depend only on
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Figure A.1: The polynomial P (u) and the distribution of its roots in the interval u ∈ [0, 1].
The orbits exist only where P (u) ≥ 0, which is shown in green. The corresponding orbit
types are marked with letters A, B , C or D and the roots are marked with u1, u2 and u3.
The sign of the discriminant D is also noted.
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Figure A.2: Left: The e�ective potential V for time-like geodesics (Eq. A.4) with the value
of reduced angular momentum of l̃ = 2.2. By choosing appropriate value of E, orbits of any
type can be constructed. Right: The e�ective potential V/l̃ for light-like geodesics (Eq. A.5).
Since the potential has no minimum, only orbits of type A, B or C can be constructed by
choosing an appropriate value of A. In case of light-like geodesics the critical orbits are also
shown. Such orbits are orbits with E = Vmax, where Vmax is the maximum of the e�ective
potential. Note, that for Vmin ≤ E ≤ Vmax the discriminant is D ≤ 0, and D > 0 otherwise.
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parameter A = E/l̃ (b = 0), the e�ective potential V does not depend on any parameters:

V

l̃
=
√
u2(1− u) . (A.5)

The orbit types for photons and di�erent values of A are shown in Fig. A.2 (right). Here it

can be seen again that photons cannot be on bound orbits because the e�ective potential

only has a maximum and no minimum. Note, that a similar situation can also occur for

massive particles if l̃ <
√

3. However, since both the minimum and the maximum of V for

time-like orbits disappear, only the orbits of type B and C exist in this case.

Exact solutions to Eqs.(2.4) � (2.8b) for orbit types that are applicable to the Galileo

GNSS are given in the following sections.

A.1 Time-like geodesics

The four types of orbits for massive particles have the following properties:

- type A: scattering orbits with both endpoints at in�nity. Scattering orbits can never

extend below r = 3M .

- type B : plunging orbits with one end at in�nity and the other behind the horizon,

- type C : near orbits with both ends behind the horizon of the black hole. Near orbits

can never reach above r = 6M .

- type D : closed orbits. Highly eccentric orbits can never reach below r = 4M while

circular orbits can never reach below r = 6M .

Since GNSS satellites are on type D orbits, only the solutions for this type are presented

here.

For easier comparison with classical orbits, the orbital parameters η = −1 + E/m⊕c
2

(orbital energy) and l̃ = l/(2m⊕rgc) (areal velocity) are expressed with the Keplerian pa-

rameters a (major semi-axis) and ε (eccentricity) of the orbit∗ such that

l̃ =
1

2

√
a(1− ε2) (A.6)

η = − 1

2a
, (A.7)

∗Here it is more natural to use the orbital energy and the areal velocity than the parameters A and B
introduced in Sec. 2.
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However, note that a and ε de�ned in this way do not correspond precisely to the

Schwarzschild aS and εS de�ned as:

aS =
1

u2
+

1

u3
(A.8)

εS =
u2 − u3
u2 + u3

. (A.9)

The �nal choice of most appropriate orbital parameters can be left open until technical

implementation of these solutions.

Introduce additional parameters:

q =
3
√

12η2 + (−81η4 − 324η3 − 378η2 − 108η + 3) l̃−2 + 24η − 12l̃−4

2l̃
(

1− 3l̃−2
)3/2 (A.10a)

ψa = − arcsin(q) (A.10b)

p =

√
1− 3/l̃2 (A.10c)

U1 = p+
1/l̃2

1 + p
− 4p

3
sin2 ψa

6
(A.10d)

U2 =
1

3

(
3/l̃2

1 + p
− p
√

3 sin
ψa
3

+ 2p sin2 ψa
6

)
(A.10e)

U3 =
1

3

(
3/l̃2

1 + p
+ p
√

3 sin
ψa
3

+ 2p sin2 ψa
6

)
(A.10f)

na =
1√

U1 − U3
(A.10g)

ma =
U2 − U3

U1 − U3
(A.10h)

na1 = 1− U2

U3
(A.10i)

na2 =
U2 − U3

1− U3
. (A.10j)

Here U1, U2, and U3 correspond to the roots of the polynomial P (u) shown in Fig. A.2 (top).

All analytical expressions have been optimized for a weak gravitational �eld (ψa � 1). We

advise to manually derive the expression (U2−U3) from U2 and U3, and use it inma, na1, and

na2 to avoid precision loss. With these parameters, the equations (2.4) � (2.8b) are solved to
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Figure A.3: Time-like geodesics of type D . Left: An orbit with l̃ = 2.32379 and E = 0.986.
Middle: Innermost stable circular orbit (ISCO) with l̃ =

√
3 and E = 2

√
3/3. Right: Orbit

of the SO-16 star near Sgr A∗ with l̃ = 25.196211749272674 and E = 0.999989536192044.
The values of l̃ and E are calculated from Ghez et al. (2005). In the �rst two examples, the
radius of the black circle is the Schwarzschild radius. In the last example only the position
of the black hole is marked by `×'.

get the type D orbit, time and proper time:

u(χ) = U2 − (U2 − U3) cos2 χ (A.11)

t(χ) =
1 + η

l̃

4na
U2
3

[(
1 + U3 +

na
2
1 −ma

2(ma − na1)(na1 − 1)

)
Π(na1;χ|ma) +

U2
3

1− U3
Π(na2;χ|ma)

+
na1/2

(ma − na1)(na1 − 1)

(
E(χ|ma)−

(
1− ma

na1

)
F(χ|ma)−

na1 sin 2χ
√

1−ma sin2 χ

2(1− na1 sin2 χ)

)]
(A.12)

τ(χ) =
t(χ)

1 + η
− 4na

U3 l̃

(
Π(na1;χ|ma) +

U3

1− U3
Π(na2;χ|ma)

)
, (A.13)

where the parameter χ and true anomaly λ are related in the following way:

χ(λ) = am
(
K(ma) +

λ

2na

∣∣∣∣ma

)
(A.14)

λ(χ) = 2na (F(χ|ma)−K(ma)) . (A.15)

Both parameters can have values in the interval λ ∈ (−∞,∞) and χ ∈ (−∞,∞). The

values of χ at periapsis and apoapsis are π/2 and 0 respectively. The de�nitions of the

elliptic integrals and functions can be found in App. C.

From equations (A.11) and (A.14) it is straightforward to obtain the following form of

the orbit equation (2.9)

u(λ) = U2 − (U2 − U3)cn2
(
K(ma) +

λ

2na
|ma

)
. (A.16)
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Few examples of type D orbits are shown in Fig. A.3.

A.2 Light-like geodesics

The orbit equations for photons depend only on the parameter A and are of three types:

- type A: scattering orbits with both endpoints at in�nity; their angular momentum

parameter is on the interval 0 < A < 2
3
√
3
. Scattering orbits can never extend below

r = 3M .

- type B : plunging orbits with one end at in�nity and the other behind the horizon;

A > 2
3
√
3
,

- type C : near orbits with both ends behind the horizon of the black hole; their angular

momentum parameter is on the interval 0 < A < 2
3
√
3
. Near orbits can never reach

beyond r = 3M .

Since we are interested in the interlinks between GNSS satellites, only the solutions for type

A orbits are presented here.∗

Introduce the following auxiliary parameters:

ψ = 2 arcsin

(
3
√

3

2
A

)
(A.17a)

u1 = 1− 4

3
sin2 ψ

6
(A.17b)

u2 =
2

3
sin2 ψ

6
+

1√
3

sin
ψ

3
(A.17c)

u3 =
2

3
sin2 ψ

6
− 1√

3
sin

ψ

3
(A.17d)

m =
2 tan ψ

3

tan ψ
3 +
√

3
(A.17e)

n =
2√

1− 2 sin2 ψ
6 + 1√

3
sin ψ

3

(A.17f)

n1 = 1− u2
u3

(A.17g)

n2 =
u2 − u3
1− u3

. (A.17h)

∗Keeping in mind that the value of M for Earth is only few millimeters, and that the radius of satellites'
orbits is about 30.000 km, the need for type B orbits could arise only if e.g. two satellites are almost perfectly
one below another, or the receiver on Earth is almost perfectly below a satellite.
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Figure A.4: Some orbits of type A with initial
point at ri = 20M and parameters 2

3
√
3
−A ∈

{0.2, 0.15, 0.1, 0.05, 0.005}. The radius of the
black circle is the Schwarzschild radius.

Here u1, u2, and u3 correspond to the roots of the polynomial P (u) shown in Fig. A.2 (top).

All analytical expressions have been optimized for weak gravitational �elds (ψ � 1). We

advise to manually derive the expression (u2 − u3) from u2 and u3, and use it in n1 and n2
to avoid precision loss. With these parameters, the equations (2.4) � (2.8a) are solved to get

the type A orbit and time:

u(χ) = u2 − (u2 − u3) cos2 χ (A.18)

t(χ) =
2n

u23

2

3
√

3
sin

ψ

2

[(
1 + u3 +

n21 −m
2(m− n1)(n1 − 1)

)
Π(n1;χ|m) +

u23
1− u3

Π(n2;χ|m)

+
n1/2

(m− n1)(n1 − 1)

(
E(χ|m)−

(
1− m

n1

)
F(χ|m)− n1 sin 2χ

√
1−m sin2 χ

2(1− n1 sin2 χ)

)]
,

(A.19)

where the parameter χ and true anomaly λ are related in the following way:

χ(λ) = am
(
K(m) +

λ

n

∣∣∣∣m) (A.20)

λ(χ) = n (F(χ|m)−K(m)) . (A.21)

The parameter χ can have values in the interval χ ∈ (χmin, χmax), where χmin =

arccos
(√

u2/(u2 − u3)
)
and χmax = arccos

(
−
√
u2/(u2 − u3)

)
. The true anomaly λ can

have values in the interval λ ∈ (F(χmax|m) − K(m),F(χmin|m) − K(m)). The value of χ

at periapsis is π/2. The de�nitions of the elliptic integrals and functions can be found in

App. C.

From equations (A.18) and (A.20) it is straightforward to obtain the following form of

the orbit equation (2.10)

u(λ) = u2 − (u2 − u3)cn2
(
K(m) +

λ

n
|m
)
. (A.22)

Few examples of type A orbits are shown in Fig. A.4.



40 A. Equations in Schwarzschild space-time

A.3 Ray-tracing

The method for determining the orbital parameter A has been described in �K05, but to

apply it in the weak gravitational �eld limit, some care must be taken to avoid numerical

cancellation errors. For this purpose, the RHS of equation (19) from �K05, i.e. equations

(20) and (21) are rewritten in the following way:

right1 = −2
√

3

(
(3 cos

ψ

3
+
√

3ψ3)

√
(3uf − 2ψ6 −

√
3ψ3)(3ui − 2ψ6 −

√
3ψ3)

+

√
(3− 3uf − 4ψ6)(3− 3ui − 4ψ6)(3uf − 2ψ6 +

√
3ψ3)(3ui − 2ψ6 +

√
3ψ3)

)/
(

18
√

3uiuf − 4
√

3ψ6(2 + 3(uf + ui) + 4 cos
ψ

3
)− 12ψ3 + 18ψ3(ui + uf )− 12 sin

2ψ

3

)
(A.23)

right2 = −2
√

3

(
− (3 cos

ψ

3
+
√

3ψ3)

√
(3uf − 2ψ6 −

√
3ψ3)(3ui − 2ψ6 −

√
3ψ3)

+

√
(3− 3uf − 4ψ6)(3− 3ui − 4ψ6)(3uf − 2ψ6 +

√
3ψ3)(3ui − 2ψ6 +

√
3ψ3)

)/
(

18
√

3uiuf − 4
√

3ψ6(2 + 3(uf + ui) + 4 cos
ψ

3
)− 12ψ3 + 18ψ3(ui + uf )− 12 sin

2ψ

3

)
,

(A.24)

where ψ3 and ψ6 are de�ned as

ψ3 = sin
ψ

3
(A.25a)

ψ6 = sin2 ψ

6
, (A.25b)

and ui = 2M/ri and uf = 2M/rf are the radial coordinates of the initial and the �nal point

respectively. The LHS of equation (19) from �K05 remains the same:

left = cn
(

∆λ

n
|m
)
. (A.26)

The solution to the equation left = right1 or left = right2 determines the value of parameter

ψ, as shown in Fig. A.5. This equation for ψ is solved numerically (using e.g. bisection or

Newton method) starting from the zero-order approximation ψ(0) from Kepler:

ψ(0) = 3 arcsin

√
3

4

((
1 + cot

∆λ

2

)
(ui − uf )2 + (ui + uf )2

(
1 + tan

∆λ

2

))
. (A.27)



A.3. Ray-tracing 41

left

right2

right1

0 5. ´ 10-8 1. ´ 10-7 1.5 ´ 10-7 2. ´ 10-7

0.0

0.2

0.4

0.6

0.8

1.0

Ψ

R
H

S
,L

H
S

Figure A.5: Finding the value of ψ from
(A.23) � (A.26) for ∆λ = 168.05◦, ri = 2.67×
109 M , and rf = 2×1010 M . The values were
chosen to approximate the values for GNSS
satellites. The red line marks the numerically
found value for ψ = 2.1244× 10−8.

The last step is to determine the time-of-�ight between Pi and Pf . First, choose as the
initial point ui one that is at a greater radius, and the �nal point uf one that is at a smaller

radius:

ui = 2M/max(ri, rf ) (A.28)

uf = 2M/min(ri, rf ) . (A.29)

Next, calculate χi at ui and the di�erence of true anomaly ∆λp from this point to the

periapsis:

χi = arccos

√
u2 − ui
u2 − u3

(A.30)

∆λp = n(K(m)− F(χi|m)) , (A.31)

where n and m are determined by (A.17f) and (A.17e). The value of χf depends on whether

the orbit to the �nal point passes the periapsis or not:

χf =


arccos

(√
u2−uf
u2−u3

)
if ∆λp > ∆λ

arccos

(
−
√

u2−uf
u2−u3

)
if ∆λp < ∆λ

. (A.32)

Finally, use χi and χf in (A.19) to calculate the time-of-�ight:

∆t = t(χf )− t(χi) . (A.33)





BCalculating Schwarzschild

coordinates from

null-coordinates

In this chapter we give the Mathematica routines used for the calculation of Schwarzschild

coordinates of a user, knowing the four times sent by four satellites and their orbital

parameters. Each routine could be used separately. These algorithms are �proof-of-

concept�, and their execution can be slow. We remind here that they have been written

in Fortran for extensive tests. The Fortran codes are publicly available on the website

atlas.estec.esa.int/ariadnet.

The input parameters of the Main program areMyTime - dead reckoning time coordinate

and vector τ in the form τ = {{No1, τ1}, {No2, τ2}, {No3, τ3}, {No4, τ4}}, whereNo1 . . . No4
are the numbers of the four satellites providing their proper time signals τ1 to τ4. The output

gives the position of the observer and the calculated error, i.e. the residue of (3.3) in the

following form {{X,Y, Z, t}, {δt1, δt2, δt3, δt4}}.
The main program needs the following routines:

• Satelit[k] which returns the constants of motion of the kth satellite in the following

order {ι, ω, Ω, ε, a, t0}

• Orbit[λ, Parameters] returns the position of the satellite with the given orbital pa-

rameters (Parameters) as a function of true anomaly (λ) in the form: {X,Y, Z, t, τ}.
Parameters = {ι, ω, Ω, ε, a, t0}.

• Tau[λ, Parameters] returns the proper time of the satellite with orbital Parameters if

true anomaly is λ; note: the value of λ is limited only by the range of reals de�ned by

the computer.

• Anomaly[τ, Sat], returns the true anomaly of a satellite with Parameters =

Satelit[Sat]

43
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• toχF [ri, rf , θ] returns the time of �ight between two points at ri and rf from the center

of the Earth and the view angle of these points from the center of the Earth is θ.

• Iteriraj[t1, t2][Ra, Toc]; The input parameter Ra is a vector {tNo1 − tm, tNo2 −
tm, tNo3 − tm, tNo4 − tm}, where tNok is the global Schwarzschild time at the moment

when the kth satellite emitted the proper time signal τk and tm is the current estimate

for the time coordinate of the observer. Toc is the vector of four 3-vectors

{{XNo1 , YNo1 , ZNo1}, {XNo2 , YNo2 , ZNo2}, {XNo3 , YNo3 , ZNo3}, {XNo4 , YNo4 , ZNo4}},
i.e. positions of satellites when they emitted their timing signals. The input param-

eters t1 and t2 specify the interval {tm + t1, tm + t2} on which the solution for the

observer time should be searched. The explicit output of Iteriraj is a new narrower

interval {t1, t2}. Iteriraj also has an implicit output in the vector rez, such that

rez[[1]] and rez[[2]] are the 3-coordinates of points on line 1 and line 2 (see text above),

where these lines meet at closest distance.

• Matrix[Toc, Pos] calculates the characteristic matrix of (3.6), where Toc are positions

of satellites as in Iteriraj and Pos is the best space-time position of the observer before

relativistic correction.

• RHS calculates the left hand side of (3.6). Cas[A] takes the 4-th component of a

vector (global Schwarzschild time) and Polozaj[A] makes a position 3-vector out of a

four or 5-vector.
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Main program

WhereGalileo =

Function

[
{MyTime, τin}, i1 = IntegerPart [τin[[1, 1]]] ;

i2 = IntegerPart [τin[[2, 1]]] ;

i3 = IntegerPart [τin[[3, 1]]] ;

i4 = IntegerPart [τin[[4, 1]]] ;

FourSatellites = {Orbit[Anomaly[τin[[1, 2]], Satelit[i1]], Satelit[i1]],

Orbit[Anomaly[τin[[2, 2]], Satelit[i2]], Satelit[i2]],

Orbit[Anomaly[τin[[3, 2]], Satelit[i3]], Satelit[i3]],

Orbit[Anomaly[τin[[4, 2]], Satelit[i4]], Satelit[i4]]};

Toc = Table[Polozaj[FourSatellites[[i]]], {i, 4}];

Ra = Table[MyTime− Cas[FourSatellites[[i]]], {i, 4}];

TimeInterval = 0.01Sqrt[Toc[[1]].T oc[[1]]];

Kam = Iteriraj[{−TimeInterval, T imeInterval}][Ra, Toc];Sigma = 1;

While[Sigma > 2× 10−15Rd1,Kam = Iteriraj[Kam][Ra, Toc]];

SpPos0 = Append[rez[[1]], Avg];

ME = Matrix[Toc, Polozaj[SpPos0]];

Razlika = RHS[Ra, Toc, rez[[1]]]− (Cas[SpPos0]);

X = x, y, z, ttt;

RRes = Solve[ME.X == Razlika, x, y, z, ttt];

∆P = X/.RRes[[1]];

NP = Polozaj[SpPos0] + Table[∆P [[i]], i, 3];

RazlikaF = RHS[Ra, Toc,NP ]− (Cas[SpPos0])−∆P [[4]];

RNres = Solve[ME.X == RazlikaF, x, y, z, ttt];

∆PN = X/.RNres[[1]];

NNP = Polozaj[SpPos0] + Table[∆P [[i]] + ∆PN [[i]], i, 3];

SpaceT imePositionN = {Append[NNP, (Cas[SpPos0]) + ∆P [[4]] + ∆PN [[4]]],

RHS[Ra, Toc,NNP ]− (Cas[SpPos0])−∆PN [[4]]−∆P [[4]]}
]
;
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Routines

Orbit = Function

[
{φ, Parameters},

ι = Parameters[[1]];ω = Parameters[[2]]; Ω = Parameters[[3]];

a = Parameters[[4]]; ε = Parameters[[5]]; t0 = Parameters[[6]];

ep1 = cos[ω] cos[Ω]− cos[ι] sin[ω] sin[Ω], cos[ι] cos[Ω] sin[ω] + cos[ω] sin[Ω], sin[ι] sin[ω];

ep2 = − cos[Ω] sin[ω]− cos[ι] cos[ω] sin[Ω], cos[ι] cos[ω] cos[Ω]− sin[ω] sin[Ω], cos[ω] sin[ι];

ep3 = sin[ι] sin[Ω],− cos[Ω] sin[ι], cos[ι];

λ =
1

2

√
a(1− ε2);

η = − 1

2a
;

λi = 1/λ;

qq =
3

2
Sqrt[(24η + 12η2) + (3− 108η − 378η2 − 324η3 − 81η4)λi2 − 12λi4]/(−3λi2 + 1)3/2λi;

Ψ = − arcsin[qq];

U1 =
√

1− 3/λ2 +
1/λ2

1 +
√

1− 3/λ2
− 4

3

√
1− 3/λ2 sin2[Ψ/6];

U2 =
1

3

(
3/λ2

1 +
√

1− 3/λ2
−
√

3
√

1− 3/λ2 sin[Ψ/3] + 2
√

1− 3/λ2 sin2[Ψ/6]

)
;

U3 =
1

3

(
3/λ2

1 +
√

1− 3/λ2
+
√

3
√

1− 3/λ2 sin[Ψ/3] + 2
√

1− 3/λ2 sin2[Ψ/6]

)
;

na =
1√

U1− U3
;

ma =
U2− U3

U1− U3
;

n1 = 1− U2

U3
;

n2 =
U2− U3

1− U3
;

χ = JacobiAmplitude[EllipticK[ma] +
φ

2na
,ma];
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u = U2− (U2− U3) cos[χ]2;

tF irst = (1 + U3 +
n21 −ma

2(ma− n1)(n1 − 1)
)EllipticP i[n1, χ,ma] +

U32

1− U3
EllipticP i[n2, χ,ma];

tSecond = (EllipticE[χ,ma]− (1− ma

n1
)EllipticF [χ,ma]− (n1 sin[2χ]

√
1−ma sin2[χ]

(2(1− n1 sin[χ]2)
));

t =
4na

U32
1 + η

λ

(
tF irst+

n1/2

(ma− n1)(n1 − 1)
tSecond

)
;

τF irst =
U2− U3

λU2(U2 + (−1 +ma)U3)
EllipticE[χ,ma]− 1

λU2
EllipticF [χ,ma];

τSecond =
U22 + 2maU2U3 + (−1 +ma)U32

λU2U3(U2 + (−1 +ma)U3)
EllipticP i[1− U2

U3
, χ,ma];

τThird =
cos[χ] sin[χ]

√
1−ma sin[χ]2(U2− U3)2

λU2(U2 + (−1 +ma)U3)(sin[χ]2U2 + cos[χ]2U3)
;

τ =
2na

U3
(τF irst+ τSecond+ τThird) ;

R3 = 2/u(cos[φ]ep1 + sin[φ]ep2);

V en = Join[R3, t+ t0, τ ]

]
;

��� END ORBIT ���
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Tau = Function

[
{φ, Parameters},

ι = Parameters[[1]];ω = Parameters[[2]]; Ω = Parameters[[3]];

a = Parameters[[4]]; ε = Parameters[[5]]; t0 = Parameters[[6]];

λ = 1/2Sqrt[a(1− ε2)]; η = − 1

2a
; λi = 1/λ;

qq =
3

2

√
(24η + 12η2) + (3− 108η − 378η2 − 324η3 − 81η4)λi2 − 12λi4

(−3λi2 + 1)(3/2)
λi;

Ψ = − arcsin[qq];

U1 =
√

1− 3/λ2 +
1/λ2

1 +
√

1− 3/λ2
− 4

3

√
1− 3/λ2 sin2[Ψ/6];

U2 =
1

3

(
3/λ2

1 +
√

1− 3/λ2
−
√

3
√

1− 3/λ2 sin[Ψ/3] + 2
√

1− 3/λ2 sin Ψ/62
)

;

U3 =
1

3

(
3/λ2

1 +
√

1− 3/λ2
+
√

3
√

1− 3/λ2 sin[Ψ/3] + 2
√

1− 3/λ2 sin[Ψ/6]2

)
;

na =
1√

U1− U3
;

ma =
U2− U3

U1− U3
;

n1 = 1− U2

U3
;

n2 =
U2− U3

1− U3
;

χ = JacobiAmplitude[EllipticK[ma] +
φ

2na
,ma];

τF irst =
U2− U3

λU2(U2 + (−1 +ma)U3)
EllipticE[χ,ma]− 1

λU2
EllipticF [χ,ma];

τSecond =
U22 + 2maU2U3 + (−1 +ma)U32

λU2U3(U2 + (−1 +ma)U3)
EllipticP i[1− U2

U3
, χ,ma];

τThird =
cos[χ] sin[χ]

√
1−ma sin[χ]2(U2− U3)2

λU2(U2 + (−1 +ma)U3)(sin[χ]2U2 + cos[χ]2U3)
;

τ =
2na

U3
(τF irst+ τSecond+ τThird)

]
;

��� END TAU ���
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Funk

[
τ, w1, w2, Sat

]
:=

(w2− w1)(τ − Tau[w1, Sat])

Tau[w2, Sat]− Tau[w1, Sat]
+ w1;

Anomaly = Function

[
{τ, Sat},

s1 = Funk[τ, 0, π, Sat];

s2 = Funk[τ, s1× 0.99, s1× 1.01, Sat];

s3 = Funk[τ, s2× 0.99999, s2× 1.00001, Sat]

]
;

��� END ANOMALY ���
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toχF = Function

[
{ri, rf, θ}, ui =

2

Max[ri, rf ]
; uf =

2

Min[ri, rf ]
;

ψi = 3 arcsin[

√
3

4
((1 + Cot[

θ

2
]2)(ui − uf )2 + (ui + uf )2(1 + tan[

θ

2
]2))];

µ =
2√
3

tan[ψi

3 ]

1 + 1√
3

tan[ψi

3 ]
; ν =

2√
1− 2 sin[ψi

6 ]2 + 1√
3

sin[ψi

3 ]
;

Levi = JacobiCN [
θ

ν
, µ];

RFirst =

√
(3uf − 2 sin[

ψi
6

]2 −
√

3 sin[
ψi
3

])(3ui − 2 sin[
ψi
6

]2 −
√

3 sin[
ψi
3

]);

RSecond =
(
(3− 3uf − 4 sin[

ψi
6

]2)(3− 3ui − 4 sin[
ψi
6

]2)(3uf − 2 sin[
ψi
6

]2+

√
3 sin[

ψi
3

])(3ui − 2 sin[
ψi
6

]2 +
√

3 sin[
ψi
3

])
)1/2

;

RDen = 18
√

3ufui − 4
√

3(2 + 3uf + 3ui + 4 cos[
ψi
3

]) sin[
ψi
6

]2 − 12 sin[
ψi
3

]+

18uf sin[
ψi
3

] + 18ui sin[
ψi
3

]− 12 sin[
(2ψi)

3
];

R1 = −
2
√

3((3 cos[ψi

3 ] +
√

3 sin[ψi

3 ])RFirst+RSecond)

RDen
;

R2 = −
2
√

3(−(3 cos[ψi

3 ] +
√

3 sin[ψi

3 ])RFirst+RSecond)

RDen
;

ψo = If

[
Abs[R1− Levi] < Abs[R2− Levi],

F indRoot
[

JacobiCN

[
1

2
θ

√
cos[

x

3
] +

1√
3

sin[
x

3
],

2 tan[x3 ]
1√
3

+ tan[x3 ]

]
+

√
3

9
√

3ufui − 2
√

3(2 + 3uf + 3ui + 4 cos[x3 ]) sin[x6 ]2 − (6− 9uf − 9ui) sin[x3 ]− 6 sin[2x3 ](√
((1− 3uf + 2 cos[

x

3
])(1− 3ui + 2 cos[

x

3
])√

(1− 3uf − cos[
x

3
]−
√

3 sin[
x

3
])(1− 3ui − cos[

x

3
]−
√

3 sin[
x

3
]) +
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(3 cos[
x

3
] +
√

3 sin[
x

3
])

√
1− 3uf − cos[

x

3
] +
√

3 sin[
x

3
])(1− 3ui − cos[

x

3
] +
√

3 sin[
x

3
]

)
,

{x, ψi}
]
,

F indRoot
[

JacobiCN

[
1

2
θ

√
cos[

x

3
] +

1√
3

sin[
x

3
],

2 tan[x3 ]
1√
3

+ tan[x3 ]

]
+

√
3

9
√

3ufui − 2
√

3(2 + 3uf + 3ui + 4 cos[x3 ]) sin[x6 ]2 − (6− 9uf − 9ui) sin[x3 ]− 6 sin[2x3 ](√
((1− 3uf + 2 cos[

x

3
])(1− 3ui + 2 cos[

x

3
])√

(1− 3uf − cos[
x

3
]−
√

3 sin[
x

3
])(1− 3ui − cos[

x

3
]−
√

3 sin[
x

3
]) −

(3 cos[
x

3
] +
√

3 sin[
x

3
])

√
1− 3uf − cos[

x

3
] +
√

3 sin[
x

3
])(1− 3ui − cos[

x

3
] +
√

3 sin[
x

3
]

)
,

{x, ψi}
]]

;

ψ = x/.ψo;

u2 =
2

3
sin[

ψ

6
]2 + sin[

ψ

3
]/
√

3; u3 =
2

3
sin[

ψ

6
]2 − 1√

3
sin[

ψ

3
];

n1 = 1− u2

u3
; n2 =

u2− u3

1− u3
; u2minusu3 =

2√
3

sin[
ψ

3
];

m =
2√
3

tan[ψ3 ]

1 + 1√
3

tan[ψ3 ]
; n =

2√
1− 2 sin[ψ6 ]2 + 1√

3
sin[ψ3 ]

;

χ1 = arccos[
√

(u2− ui)/u2minusu3];



52 B. Calculating Schwarzschild coordinates from null-coordinates

∆λp = Re[n(EllipticK[m]− EllipticF [χ1,m])];

χ2 = If [∆λp > θ, arccos[

√
u2− uf

u2minusu3
], arccos[−

√
((u2− uf )/u2minusu3)];

out = χ1, χ2;

TimeOfF light =
2n

u32
2

3
√

3
sin[

ψ

2
]

(
(1 + u3 +

(n21 −m)

2(m− n1)(n1 − 1)
)

If

[
Re[n1] < 1, EllipticP i[n1, χ2,m], 2Quotient[χ2, π]EllipticP i[n1,

π

2
,m]−

1

(n1 − 1)
√

1−m
EllipticP i[

n1
n1 − 1

, χ2− π

2
,

m

m− 1
]

]
+

u32

1− u3

If

[
Re[n1] < 1, EllipticP i[n1, χ2,m], 2Quotient[χ2, π]EllipticP i[n1,

π

2
,m]−

1

(n1 − 1)
√

1−m
EllipticP i[

n1
n1 − 1

, χ2− π

2
,

m

m− 1
]

]
+

n1/2

(m− n1)(n1 − 1)
(EllipticE[χ2,m]−

(1− m

n1
)EllipticF [χ2,m]−

n1 sin[2χ2]
√

1−m sin[χ2]2

2(1− n1 sin[χ2]2)
)

)
−

2n

u32
2

3
√

3
sin[

ψ

2
]

((
1 + u3 +

n21 −m
2(m− n1)(n1 − 1)

)
If

[
Re[n1] < 1, EllipticP i[n1, χ1,m], 2Quotient[χ1, π]EllipticP i[n1,

π

2
,m]−

1

(n1 − 1)
√

1−m
EllipticP i[

n1
n1 − 1

, χ1− π

2
,

m

m− 1
]

]
+

u32

1− u3

If

[
Re[n1] < 1, EllipticP i[n1, χ1,m], 2Quotient[χ1, π]EllipticP i[n1,

π

2
,m]

− 1

(n1 − 1)
√

1−m
EllipticP i[

n1
n1 − 1

, χ1− π

2
,

m

m− 1
]

]
+

n1/2

(m− n1)(n1 − 1)

(
EllipticE[χ1,m]

− (1− m

n1
)EllipticF [χ1,m]−

n1 sin[2χ1]
√

1−m sin[χ1]2

2(1− n1 sin[χ1]2)

))]
;

��� END TIME OF FLIGHT ���
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Fun = Function

[
{Casi, t, Tocke},

P rvi = Premica1

[
Tocke[[1]], Casi[[1]]− t, Tocke[[2]], Casi[[2]]− t,

Tocke[[3]], Casi[[3]]− t, Tocke[[4]], Casi[[4]]− t
]
;

Drugi = Premica1

[
Tocke[[2]], Casi[[2]]− t, Tocke[[3]], Casi[[3]]− t,

Tocke[[1]], Casi[[1]]− t, Tocke[[4]], Casi[[4]]− t
]
;

A = Prvi[[1]]; B = Drugi[[1]];

s1 = Prvi[[2]]; s2 = Drugi[[2]];

den = Cross[s1, s2];

u =
(A−B).s2 s1.s2− (A−B).s1

den.den
;

v =
(A−B).s2− (A−B).s1 s1.s2

den.den
;

rez = {A+ us1, B + vs2};

Rad = Table
[√

(Tocke[[i]]− rez[[1]]).(Tocke[[i]]− rez[[1]]), {i, 4}
]]

;

Iteriraj[{ss1, ss2}] = Function

[
{Casi, Tocke},

Y 1 = Fun [Casi, ss1, T ocke]− Casi+ {ss1, ss1, ss1, ss1};

Y 2 = Fun [Casi, ss2, T ocke]− Casi+ {ss2, ss2, ss2, ss2};

ss0 = Table

[
Y 2[[i]]ss1− Y 1[[i]]ss2

Y 2[[i]]− Y 1[[i]]
, {i, 4}

]
;

Avg = Sum [ss0[[i]], {i, 4}] /4;Sigma = Sqrt
[
Sum[(ss0[[i]]−Avg)2, {i, 4}]

]
/4;

Meje = If [Sigma > 0, Sigma, 10−12]; {Avg −Meje,Avg +Meje}

]
;

��� END ITERIRAJ ���

Subprocedures

• Odseka: a , b , c are the sides of a triangle (with vertices A, B, C), let c be considered

a base, so that the vertices at its ends have coordinates A = {0, 0} and B = {0, c}; the
routine returns {χ, η, h} such that the coordinates of vertex C are C = {cχ, h}
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• Premica1: let rr1 . . . rr4 be the coordinates of 4 points and dd1dotsdd4 be the radii of

four spheres (S1, . . . , S4) centred at rr1 . . . rr4. The intersection of S1 and S2 de�nes

a plane P12, and the intersection of S3 and S4 de�nes a plane P23. The intersection

of P12 and P23 is a straight line with equation:

~r(s) = ~a+ n̂s; (B.1)

the output of Premica1 are the two 3 - vectors ~a and n̂ (n̂ is a unit vector)

• Fun[Casi, tr, T ocke] : Tocke is the array of position vectors of the 4 satellites at the

moment of emission of their signals and Casi is the array ti-t0 (i = 1 . . . 4),where ti
are the global times (Schwarzschild, not proper) at the moment of emission of their

signals and t0 is the current approximation to the time of the observer. The variable

rez holds two position vectors to the point on line 1 and line 2 where the two lines meet

at closest distance (see text above); their average position are the best coordinates for

the position of the Galileo user if his time is t0− tr. The output array Rad gives the 4

times of �ight (here in �at space) to the satellites calculated from the assumed position

in time; Rad is the explicit output of this routine and rez is the variable set by this

routine (see Iterate).

Matrix = Function

[
{Tocke, Pos},

DirV ek = Table

[
(Pos− Tocke[[i]])√

(Pos− Tocke[[i]]).(Pos− Tocke[[i]])
, {i, 4}

]
;

DV = Table

[
Append[DirV ek[[i]], 1], {i, 4}

]]
;

��� END MATRIX ���
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RHS = Function

[
{Casi, Tocke, Pos},

Des = Table

[
Casi[[i]]−

toχF [
√
Tocke[[i]].T ocke[[i]],

√
Pos.Pos,

arccos[Pos.Tocke[[i]]√
Tocke[[i]].T ocke[[i]]

√
Pos.Pos

]]
, {i, 4}]];

��� END RHS ���

Cas[A] := A[[4]];

Polozaj[A] := Table [A[[i]], {i, 3}] ;

Premica1 = Function

[
{rr1, dd1, rr2, dd2, rr3, dd3, rr4, dd4},

c =
√

(rr2− rr1).(rr2− rr1); n11 = Cross[rr2, rr1];

n1 =
n11√
n11.n11

; n2 = Cross[(rr2− rr1)/c, n1];

Prm = Odseka[dd1, dd2, c]; c1 =
√

(rr4− rr3).(rr4− rr3);

n11p = Cross[rr4, rr3]; n1p =
n11p√

n11p.n11p
;

n2p = Cross[(rr4− rr3)/c1, n1p];

Prmp = Odseka[dd3, dd4, c1];

ν1 = Cross[n1, n2];

ν2 = Cross[n1p, n2p];

a = rr1 + Prm[[1]](rr2− rr1);

b = rr3 + Prmp[[1]](rr4− rr3);

prem = Cross[ν1, ν2];

Nprem = prem.prem;

R = { a.ν1
Nprem

Cross[ν2, prem] +
b.ν2

Nprem
Cross[prem, ν1],

prem√
Nprem

}
]
;

��� END PREMICA ���
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eps = 10−8; to test if one of angles >π/2

Odseka = Function

[
{a, b, c},

α =
a

c
;β =

b

c
;σ =

1

2
(α+ β + 1);

A2 = σ(σ − α)(σ − β)(σ − 1);

h = 2
√
A2; χ =

√
α2 − 4A2; η =

√
β2 − 4A2;

ven = If [Abs[χ+ η − 1] < eps, {χ, η, h}, If [Abs[−χ+ η − 1] < eps, {−χ, η, h},

If [Abs[χ− η − 1] < eps, {χ,−η, h}, {}]]]

]
;

��� END ODSEKA ���



CElliptic integrals and functions

In this report, we adopted the following de�nitions for elliptic integrals and functions (Wol-

fram 1996).

Elliptic integral of the �rst kind

F(φ|m) =

∫ φ

0

du√
1−m sin2 u

(C.1)

Complete elliptic integral of the �rst kind

K(m) = F
(π

2
|m
)

=

∫ π/2

0

du√
1−m sin2 u

(C.2)

Elliptic integral of the second kind

E(φ|m) =

∫ φ

0

√
1−m sin2 u du (C.3)

Elliptic integral of the third kind

Π(n;φ|m) =

∫ φ

0

du

(1− n sin2 u)
√

1−m sin2 u
(C.4)

If n > 1 and φ > arcsin 1√
n
then the value of Π is complex. To get the real values, this

integral has to be evaluated at a di�erent branch:

Π(n;φ|m)→ −1

(n− 1)
√

1−m
Π

(
n

n− 1
;φ− π

2

∣∣∣∣ m

m− 1

)
(C.5)

Jacobi amplitude

If u = F(φ|m) then φ = am(u|m) . (C.6)
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Jacobi elliptic functions

If φ = am(u|m) then:

sn(u|m) = sinφ (C.7)

cn(u|m) = cosφ (C.8)

dn(u|m) =

√
1−m sin2 φ . (C.9)
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