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Foreword

I the last decade we have seen an enormous growth in satellite navigation systems and
the utilization thereof. GPS and GLONASS are widely used for a wide range of
applications and new systems like Galileo and Beidou are being set up to widen the

possibilities. All these systems have in common, that they are based on Newtonian physics.
Relativistic effects (sometimes called ”Newtonian defects”) are treated as deviations that
need to be corrected for. In parallel, in the last decade, a number of physicists have worked
on theoretical concepts of relativistic positioning and relativistic reference frames.
In a unique collaboration between the ESA Advanced Concepts Team and the Faculty of
Mathematics and Physics of the University of Ljubljana with the support of the Slovenian
Centre of Excellence for Space Sciences and Technologies this workshop was organised in
the picturesque environment of Brdo, Slovenia. e main objectives was to bring physicists
and engineers together to discuss the latest theoretical and experimental findings as well as
potential implementations.
e programme was set up with a view to maximising the interaction between the par-
ticipants by allowing sufficient time for discussion after every presentation and at the end
of every session. Five well recognized specialists were invited to give plenary lectures on
key concepts and the evolution of understanding since Karl Schwarzschild and Hermann
Minkowski.
e workshop was also addressing potential applications from fundamental physics to rel-
ativistic autonomous navigation as well as enabling technologies such as optical clocks and
inter-satellite links.
In the concluding discussion there was strong agreement that the workshop has achieved
its objectives and that further similar events should be organised in the future.

Bertram Arbesser-Rastburg
(Scientific Organizing Comittee)
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CGlobal Navigational Satellite Systems rely on global reference frames which
are fixed to the Earth via ground stations so their precision and stability in time are
limited by our knowledge of the Earth’s dynamics (e.g. plate tectonic motions, tidal

effects on the Earth’s crust and variations of the Earth’s rotation rate). ese limitations
could be avoided by giving to a constellation of satellites the possibility of constituting by
itself a primary and autonomous positioning system, without any a priori realization of a
terrestrial reference frame. Such a system leads to numerous advantages, e.g. it is a primary
reference frame which is not tied to the Earth, the relativistic effects are already included
in the definition of the positioning system, so there is no need to synchronize the clocks,
the reference frame is very precise and stable, a better understanding of the principles of
positioning systems, the new coordinates defined are measurable directly and as such open
new possibilities in experimental physics and astronomy, the system can be used for extra-
terrestrial navigation with the use of pulsars as clocks, etc.
e workshop ”Relativistic Positioning Systems and their Scientific Applications” was co-
organised by the University of Ljubljana, the Center of Excellence SPACE-SI and the Eu-
ropean Space Agency (ESA). It was held at Brdo, Slovenia from September 19th to 21st,
2012. It aimed at bringing together people working on different aspects of relativistic po-
sitioning systems, and giving them the possibility to interact with each other and exchange
ideas and knowledge in a direct way. During the three days of the workshop, we had the op-
portunity to hear the contributions covering most of the above topics. In these proceedings
we try to encompass all the concepts which were presented and discussed on this occasion.
e positive responses of the participants show that the area of Relativistic Positioning Sys-
tem research is certainly interesting and lively one, and we hope that it will continue to
attract interest and people to work in further development of Relativistic Positioning Sys-
tems.

Andreja Gomboc, Martin Horvat and Uroš Kostić
(Guest Editors)
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Abstract. An external reference system suitable
for deep space navigation can be defined by fast
spinning and strongly magnetized neutron stars,
called pulsars. eir beamed periodic signals have
timing stabilities comparable to atomic clocks and
provide characteristic temporal signatures that can
be used as natural navigation beacons, quite sim-
ilar to the use of GPS satellites for navigation on
Earth. By comparing pulse arrival times measured
on-board a spacecraft with predicted pulse arrivals
at a reference location, the spacecraft position can
be determined autonomously and with high accu-
racy everywhere in the solar system and beyond.
e unique properties of pulsars make clear already
today that such a navigation system will have its
application in future astronautics. In this paper we
describe the basic principle of spacecraft navigation
using pulsars and report on the current develop-
ment status of this novel technology.

1 Introduction

Today, the standard method of navigation for interplan-
etary spacecraft is a combined use of radio data, ob-

*Corresponding author. E-mail: wbecker@mpe.mpg.de

tained by tracking stations on Earth, and optical data
from an on-board camera during encounters with solar
system bodies. Radio measurements taken by ground
stations provide very accurate information on the dis-
tance and the radial velocity of the spacecraft with typi-
cal random errors of about 1m and 0.1mm/s, respec-
tively [43]. e components of position and velocity
perpendicular to the Earth-spacecraft line, however, are
subject to much larger errors due to the limited angular
resolution of the radio antennas. Interferometric meth-
ods can improve the angular resolution to about 25 nrad,
corresponding to an uncertainty in the spacecraft posi-
tion of about 4 km per astronomical unit (AU) of dis-
tance between Earth and spacecraft [37]. With increas-
ing distance from Earth, the position error increases as
well, e.g., reaching a level of uncertainty of the order
of ±200 km at the orbit of Pluto and ±500 km at the
distance of Voyager 1. Nevertheless, this technique has
been used successfully to send space probes to all planets
in the solar system and to study asteroids and comets at
close range. However, it might be necessary for future
missions to overcome the disadvantages of this method,
namely the dependency on ground-based control and
maintenance, the increasing position and velocity un-
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certainty with increasing distance from Earth as well as
the large propagation delay and weakening of the signals
at large distances. It is therefore desirable to automate
the procedures of orbit determination and orbit control
in order to support autonomous space missions.

Possible implementations of autonomous navigation
systems were already discussed in the early days of space
flight [4]. In principle, the orbit of a spacecraft can
be determined by measuring angles between solar sys-
tem bodies and astronomical objects; e.g., the angles
between the Sun and two distant stars and a third an-
gle between the Sun and a planet. However, because
of the limited angular resolution of on-board star track-
ers and sun sensors, this method yields spacecraft po-
sitions with uncertainties that accumulate typically to
several thousand kilometers. Alternatively, the naviga-
tion fix can be established by observing multiple solar
system bodies: It is possible to triangulate the space-
craft position from images of asteroids taken against a
background field of distant stars. is method was re-
alized and flight-tested on NASA’s Deep-Space-1 mis-
sion between October 1998 and December 2001. e
AutonomousOptical Navigation (AutoNav) system on-
board Deep Space 1 provided the spacecraft orbit with
1σ errors of ±250 km and ±0.2 m/s, respectively [48].
Although AutoNav was operating within its validation
requirements, the resulting errors were relatively large
compared to ground-based navigation.

In the 1980s, scientists at NRL (United States Naval
Research Laboratory) proposed to fly a demonstration
experiment called the Unconventional Stellar Aspect
(USA) experiment [57]. Launched in 1999 on the Ad-
vanced Research andGlobal Observation Satellite (AR-
GOS), this experiment demonstrated a method of po-
sition determination based on stellar occultation by the
Earth’s limb as measured in X-rays. is technique,
though, is limited to satellites in low Earth orbit.

An alternative and very appealing approach to au-
tonomous spacecraft navigation is based on pulsar tim-
ing. e idea of using these celestial sources as a nat-
ural aid to navigation goes back to the 1970s when
Downs [29] investigated the idea of using pulsating ra-
dio sources for interplanetary navigation. Downs ana-
lyzed a method of position determination by compar-
ing pulse arrival times at the spacecraft with those at
a reference location. Within the limitations of tech-
nology and pulsar data available at that time (a set of
only 27 radio pulsars were considered), Downs showed
that spacecraft position errors on the order of 1500 km
could be obtained after 24 hours of signal integration.

A possible improvement in precision by a factor of 10
was estimated if better (high-gain) radio antennas were
available for the observations.

Chester & Butman [22] adopted this idea and pro-
posed to use X-ray pulsars, of which about one dozen
were known at the time, instead of radio pulsars. ey
estimated that 24 hours of data collection from a small
on-board X-ray detector with 0.1m2 collecting area
would yield a three-dimensional position accurate to
about 150 km. eir analysis, though, was not based
on simulations or actual pulsar timing analyses; neither
did it take into account the technological requirements
or weight and power constraints for implementing such
a navigation system.

ese early studies on pulsar-based navigation esti-
mated relatively large position and velocity errors so that
this method was not considered to be an applicable al-
ternative to the standard navigation schemes. However,
pulsar astronomy has improved considerably over the
last 30 years since these early proposals. Meanwhile,
pulsars have been detected across the electromagnetic
spectrum and their emission properties have been stud-
ied in great detail (cf. [8] for a collection of comprehen-
sive reviews on pulsar research). Along with the recent
advances in detector and telescope technology this mo-
tivates a general reconsideration of the feasibility and
performance of pulsar-based navigation systems. e
present paper reports on our latest results and ongo-
ing projects in this field of research. Its structure is as
follows: After summarizing the most relevant facts on
pulsars and discussing which pulsars are best suited for
navigation purposes in § 2, we briefly describe the prin-
ciples of pulsar-based navigation in § 3. Pulsars emit
broadband electromagnetic radiation which allows an
optimization for the best suited waveband according to
the highest number of bits per telescope collecting area,
power consumption, navigator weight and compactness.
A possible antenna type and size of a navigator which
detects pulsar signals at 21 cm is described in § 4. In § 5
we discuss the possibility of using X-ray signals from
pulsars for navigation. e recent developments of low-
mass X-ray mirrors and active-pixel detectors, briefly
summarized in § 6, makes it very appealing to use this
energy band for pulsar-based navigation.

12 DOI: 10.2420/AF07.2013.11
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2 e Various Types of Pulsars and their
Relevance for Navigation

Stars are stable as long as the outward-directed thermal
pressure, caused by nuclear fusion processes in the cen-
tral region of the star, and the inward-directed gravita-
tional pressure are in equilibrium. e outcome of stel-
lar evolution, though, depends solely on the mass of the
progenitor star. A star like our sun develops into a white
dwarf. Stars above≈ 8 M⊙ undergo a gravitational col-
lapse once their nuclear fuel is depleted. Very massive
stars of more than about 30 M⊙ end up as black holes
and stars in the intermediate mass range of about 8 to
30 M⊙ form neutron stars. It is assumed that a neutron
star is the result of a supernova explosion, during which
the bulk of its progenitor star is expelled into the in-
terstellar medium. e remaining stellar core collapses
under its own weight to become a very compact object,
primarily composed of neutrons – a neutron star. With
a mass of typically 1.4 M⊙, compressed into a sphere
of only 10 km in radius, they are quasi gigantic atomic
nuclei in the universe. Because of their unique proper-
ties they are studied intensively by physicists of various
disciplines since their discovery in 1967 [36].

Fast spinning and strongly magnetized neutron stars
are observable as pulsars if their spin axis and magnetic
field axis are not aligned. Having co-rotating magnetic
fields of B⊥ ≈ 109–1013 G and spin periods down to
milliseconds they radiate broadband electromagnetic ra-
diation along narrow emission cones. If this radiation
cone crosses the observer’s line of sight a pulse of inten-
sity is recorded in the observing device (cf. Figure 1).

e name Pulsar refers to this property. ey have
been discovered by their radio signals [36]. In source
catalogs their common abbreviation is therefore PSR
which stands for Pulsating Source of Radio, although
they have also been detected in other bands of the
electromagnetic spectrum meanwhile. ree different
classes of pulsars can be distinguished according to the
energy source of their electromagnetic radiation. As we
will see, only one class is suitable for spacecraft naviga-
tion:

• Accretion-powered pulsars are close binary sys-
tems in which a neutron star is accreting mat-
ter from a companion star, thereby gaining en-
ergy and angular momentum. ere are no ra-
dio waves emitted from the accretion process, but
these systems are bright in X-rays. e observed

F . Artist’s impression of a rotation-powered pulsar. e
neutron star appears as a pulsating source of radiation if the ro-
tating emission beam crosses the observer’s line of sight. Averaging
these periodic pulses of intensity over many rotation cycles results in
a stable pulse profile. Because of the timing stability of most pulsars,
the arrival time of pulses can be predicted with very high precision,
which is an essential requirement for a navigation system based on
pulsar observations.

X-ray pulses are due to the changing viewing an-
gle of a million degree hot spot on the surface of
the neutron star. ese hot spots are heated by
in-spiraling matter from an accretion disk. e
accretion disk and the accretion column itself can
also be sources of X-rays. e spin behavior of
accretion-powered pulsars can be very complicated
and complex. ey often show an unpredictable
evolution of rotation period, with erratic changes
between spin-up and spin-down as well as X-ray
burst activities [34]. Although accretion-powered
pulsars are usually bright X-ray sources, and thus
would give only mild constraints on the sensitivity
requirements of a pulsar-based navigation system,
their unsteady and non-coherent timing behavior
disqualifies them as reference sources for naviga-
tion.

• Magnetars are isolated neutron stars with excep-
tionally highmagnetic dipole fields of up to 1015 G.

DOI: 10.2420/AF07.2013.11 13
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All magnetars are found to have rotation periods
in the range of about 5 to 10 seconds. RXTE
and other X-ray observatories have detected super-
strong X-ray bursts with underlying pulsed emis-
sion from these objects. According to the mag-
netar model of Duncan & ompson [30], their
steady X-ray emission is powered by the decay of
the ultra-strong magnetic field. is model also
explains the X-ray burst activity observed from
these objects, but there are also alternative theories,
which relate these bursts to a residual fall-back disk
[53, 52]. However, their long-term timing behav-
ior is virtually unknown, which invalidates these
sources for the use in a pulsar-based spacecraft nav-
igation system.

Concerning their application for navigation, the only
pulsar class that really qualifies is that of rotation-
powered ones.

• Rotation-powered pulsars radiate broadband elec-
tromagnetic radiation (from radio to optical, X-
and gamma-rays) at the expense of their rotational
energy, i.e., the pulsar spins down as rotational en-
ergy is radiated away by its co-rotating magnetic
field. e amount of energy that is stored in the
rotation of the star can be estimated as follows: A
neutron star with a radius of R = 10 km and a
mass of M = 1.4 M⊙ has a moment of inertia
I ≈ (2/5)MR2 ≈ 1045 g cm2. e rotational en-
ergy of such a star is Erot = 2π2 I P−2. Taking the
pulsar in the Crab nebula with P ≈ 33 ms as an ex-
ample, its rotational Energy is Erot ≈ 2× 1049 erg,
which is comparable with the energy released by
thermonuclear burning of our sun in hundred mil-
lion years. e spin period of a rotation-powered
pulsar increases with time due to a braking torque
exerted on the pulsar by its magneto-dipole ra-
diation. For the Crab pulsar, the observed pe-
riod derivative is Ṗ = 4.2 × 10−13 s s−1, which
implies a decrease in rotational energy of Ėrot =
−4π2I Ṗ P−3 ≈ 4.5 × 1038 erg s−1. It has been
found, though, that the spin-down energy is not
distributed homogeneously over the electromag-
netic spectrum. In fact, only a fraction of about
(10−7 − 10−5) Ėrot is observed in the radio band
whereas it is roughly (10−4 − 10−3) Ėrot in the X-
ray band and (10−2 −10−1) Ėrot in the gamma-ray
band [9].
ere are two types of rotation-powered pulsars:

F . e P-Ṗ diagram; distribution of rotation-powered
pulsars according to their spin parameters. X-ray detected pul-
sars are indicated by colored symbols. e straight lines corre-
spond to constant ages τ = P/(2Ṗ) and magnetic field strengths
B⊥ = 3.2×1019(PṖ)1/2 as deduced within the framework of the
magnetic braking model.

(1) Field pulsars have periods between tens of mil-
liseconds to several seconds and constitute more
than 90% of the total pulsar population. (2) About
10% of the known pulsars are so-called millisecond
pulsars, which are defined to have periods below
20 milliseconds. ey are much older than normal
pulsars, posses weaker magnetic fields and, there-
fore, relatively low spin-down rates. Accordingly,
they exhibit very high timing stabilities, which are
comparable to atomic clocks [51, 45]. is prop-
erty of millisecond pulsars is of major importance
for their use in a pulsar-based navigation system.
Figure 2 clearly shows that these two types of pul-
sars belong to distinct populations. Most likely,
they are connected by an evolutionary process: It is
assumed that millisecond pulsars are born as nor-
mal pulsars in a close binary system, but their ro-
tation accelerates as they pass through a phase of
accretion in which mass and angular momentum
are transferred from the evolving companion star to

14 DOI: 10.2420/AF07.2013.11
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the pulsar (e.g., [19]). However, the fact that mil-
lisecond pulsars are often found in binary systems
does not affect their suitability for spacecraft navi-
gation as the binary motion can easily be accounted
for in pulsar timing [20]. Millisecond pulsars –
also referred to as recycled pulsars – were discov-
ered by Backer et al. [2] and studied extensively in
the radio band by, e.g., Kramer et al. [38]. Pulsed
X-ray emission from millisecond pulsars was dis-
covered by Becker & Trümper [12] using ROSAT.
However, only XMM-Newton and Chandra had
the sensitivity to study their X-ray emission prop-
erties in the 0.5 − 10 keV band in greater de-
tail. e quality of data from millisecond pul-
sars available in the X-ray data archives, though,
is still very inhomogeneous. While from several
of them high quality spectral, temporal and spatial
information is available, many others, especially
those located in globular clusters, are detected with
just a handful of events, not allowing, e.g., to
constrain their timing and spectral properties in
greater detail. From those millisecond pulsars de-
tected with a high signal-to-noise ratio strong ev-
idence is found for a dichotomy of their X-ray
emission properties. Millisecond pulsars having a
spin-down energy of Ė > 1035 erg/s (e.g., PSR
J0218+4232, B1821−24 and B1937+21) showX-
ray emission dominated by non-thermal radiation
processes. eir pulse profiles show narrow peaks
and pulsed fractions close to 100% (cf. Figure 3).
Common for these pulsars is that they show rel-
atively hard X-ray emission, making it possible to
study some of them evenwithRXTE. For example,
emission from B1821−24 in the globular cluster
M28 is detected by RXTE up to ≈ 20 keV, albeit
with limited photon statistics. For the remaining
millisecond pulsars the X-ray emission is found to
be much softer, and pulse profiles are more sinu-
soidal. eir typical fraction of pulsed X-ray pho-
tons is between 30 and 60%.

Some rotation-powered pulsars have shown glitches in
their spin-down behavior, i.e., abrupt increases of rota-
tion frequency, often followed by an exponential relax-
ation toward the pre-glitch frequency [31, 58]. is is
often observed in young pulsars but very rarely in old and
millisecond pulsars. Nevertheless, the glitch behavior of
pulsars should be taken into account by a pulsar-based
navigation system.

Today, about 2200 rotation-powered pulsars are

F . X-ray and radio pulse profiles for the six brightest mil-
lisecond pulsars. Two full pulse cycles are shown for clarity. From
Becker [9].

known [44]. About 150 have been detected in the X-ray
band [9], and approximately 1/3 of them are millisec-
ond pulsars. In the past 30 − 40 years many of them
have been regularly timed with high precision especially
in radio observations. Consequently, their ephemerides
(RA, DEC, P, Ṗ, binary orbit parameters, pulse arrival
time and absolute pulse phase for a given epoch, pulsar
proper motion etc.) are known with very high accuracy.
Indeed, pulsar timing has reached the 10−15 fractional
level, which is comparable with the accuracy of atomic
clocks. is is an essential requirement for using these
celestial objects as navigation beacons, as it enables one
to predict the pulse arrival time of a pulsar for any loca-
tion in the solar system and beyond.

DOI: 10.2420/AF07.2013.11 15
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F . Typical pulsar detection chain. e pulsar beams sweep
across the radio antenna. Radio signals are recorded and ana-
lyzed in order to produce a mean pulse profile. e data process-
ing comprises a removal of dispersion effects caused by the interstel-
lar medium (“de-dispersion”), correction for the position and proper
motion of the observatory (“barycenter correction”) and coherent
folding of many pulses. e time of arrival (TOA) of the pulse
peak is measured against a reference clock.

3 Principles of Pulsar-Based Navigation

e concept of using pulsars as navigational aids is based
on measurements of pulse arrival times and comparison
with predicted arrival times at a given epoch and refer-
ence location. A typical chain for detecting, e.g., radio
signals from a rotation-powered pulsar is shown in Fig-
ure 4.

An important step in this measurement is the
barycenter correction of the observed photon arrival
times. e pulsar ephemerides along with the posi-
tion and velocity of the observer are parameters of this
correction. Using a spacecraft position that deviates
from the true position during the observation results in a
phase shift of the pulse peak (or equivalently in a differ-
ence in the pulse arrival time). erefore, the position
and velocity of the spacecraft can be adjusted in an it-
erative process until the pulse arrival time matches with
the expected one. e corresponding iteration chain is
shown in Figure 5.

An initial assumption of position and velocity is
given by the planned orbit parameters of the space-
craft (1). e iteration starts with a pulsar observa-
tion, during which the arrival times of individual pho-

F . Iterative determination of position and velocity by a
pulsar-based navigation system.

tons are recorded (2). e photon arrival times have to
be corrected for the proper motion of the spacecraft by
transforming the arrival times (3) to an inertial refer-
ence location; e.g., the solar system barycenter (SSB).
is correction requires knowledge of the (assumed or
deduced) spacecraft position and velocity as input pa-
rameters. e barycenter corrected photon arrival times
allow then the construction of a pulse profile or pulse
phase histogram (4) representing the temporal emission
characteristics and timing signature of the pulsar. is
pulse profile, which is continuously improving in signif-
icance during an observation, is permanently correlated
with a pulse profile template in order to increase the ac-
curacy of the absolute pulse-phase measurement (5), or
equivalently, pulse arrival time (TOA). From the pulsar
ephemeris that includes the information of the absolute
pulse phase for a given epoch, the phase difference ∆ϕ
between the measured and predicted pulse phase can be
determined (cf. Figure 6).

In this scheme, a phase shift (6) with respect to the
absolute pulse phase corresponds to a range difference
∆x = cP(∆ϕ + n) along the line of sight toward the
observed pulsar. Here, c is the speed of light, P the
pulse period, ∆ϕ the phase shift and n = 0,±1,±2, . . .
an integer that takes into account the periodicity of the
observed pulses. If the phase shift is non-zero, the posi-
tion and velocity of the spacecraft needs to be corrected
accordingly and the next iteration step is taken (7). If
the phase shift is zero, or falls below a certain thresh-
old, the position and velocity used during the barycenter
correction was correct (8) and corresponds to the actual
orbit of the spacecraft.

16 DOI: 10.2420/AF07.2013.11
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F . Measuring the phase difference between the expected
and measured pulse peak at an inertial reference location; e.g., the
solar system barycenter (SSB). e top profile shows the main pulse
peak location as expected at the SSB. e bottom profile is the one
which has been measured at the spacecraft and transformed to the
SSB by assuming the spacecraft position and velocity during the
observation. If the position and velocity assumption was wrong, a
phase shift ∆ϕ is observed.

A three-dimensional position fix can be derived from
observations of at least three different pulsars (cf. Fig-
ure 7). If on-board clock calibration is necessary, the
observation of a fourth pulsar is required.

Since the position of the spacecraft is deduced from
the phase (or pulse arrival time) of a periodic signal,
ambiguous solutions may occur. is problem can be
solved by constraining the domain of possible solutions
to a finite volume around an initial position assump-
tion [18, 17], or by observing additional pulsars as il-
lustrated in Figure 7.

F . Solving the ambiguity problem by observing four pul-
sars (drawn in two dimensions). e arrows point along the pul-
sar’s lines-of-sight. Straight lines represent planes of constant pulse
phase; black dots indicate intersections of planes.

4 Radio Antenna for Pulsar-Based
Navigation

Pulsars emit broadband electromagnetic radiation.
erefore, the observing device of a pulsar-based nav-
igator can be optimized for the waveband according to
the highest number of bits per telescope collecting area,
power consumption, navigator weight, cost and com-
pactness. Especially for the question of navigator com-
pactness it is important to estimate what size a radio an-
tenna would have to have in order to detect the emission
from pulsars in a reasonable integration time. In order
to estimate this we assume pulsar parameters that are
typical for millisecond pulsars. As the radio flux from
pulsars shows a ν−1.5 dependence, observations at lower
frequencies seem to be preferred, but scintillation and
scattering effects are stronger at lower frequency. For
a navigation system operating in the radio band of the
electromagnetic spectrum, the L-band at 21 cm might
therefore be best suited.

For a pulsar detection we require a signal-to-noise
ratio of S/N = 10, a minimum integration time of
tint = 3600 s and assume a frequency bandwidth of
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∆ν = 100 MHz. For the receiver noise temperature
we take Trec = 100 K. A lower temperature would re-
quire active, e.g., cryogenic cooling, which would in-
crease cost, weight, and power consumption of a naviga-
tor. Furthermore, active cooling would severely limit the
lifetime of the navigator due to consumables like helium.
For the sky temperature we take Tsky = 5 K and for the
telescope efficiency ϵ = 0.5. If Aant is the geometri-
cal antenna area, the effective antenna area computes as
Aeff = ϵAant. For the period of the pulsar we assume
P = 10 ms and for the pulse width W = 2 ms. For the
average flux density we adopt ∆S = 10 mJy. Using the
canonical sensitivity equation [42] which corresponds to
the radiometer equation applied to pulsar observations

∆Smin =
2k

ϵAant

(Trec + Tsky)√
np tint ∆ν

√
W

P −W

and converting it to the geometrical antenna area, in-
cluding the S/N requirement, we get:

Aant =
S

N

2k
ϵ∆S

(Trec + Tsky)√
2 tint ∆ν

√
W

P −W

Here we have also assumed that both polarizations are
averaged (np = 2). From this we compute an an-
tenna area ofAant ≈ 342 m2 for the parameters specified
above. For a parabolic antenna it would mean a radius
of about

√
Aant/π ≈ 10.5 m. Increasing the integration

time to 4 hours, we find an area of≈ 171 m2, which cor-
responds to a radius of ≈ 7.3 m. For comparison, the
radius of the communication antenna used on Cassini
and Voyager is 2m. It may depend on the satellite plat-
form what size and antenna weight is acceptable, but a
parabolic antenna does not seem to be very practical for
navigation purposes. A navigator would have to observe
several pulsars, either at the same time or in series. e
pulsars must be located in different sky regions in order
to get an accurate navigation result in the x, y and z di-
rection. is, however, means that one either rotates the
parabolic antenna or, alternatively, the whole satellite to
get the pulsar signals into the antenna focus. Rotating
the satellite, though, would mean that the communica-
tion antenna will not point to earth any more, which is
undesirable. On earth satellites and space missions to
the inner solar system, power is usually generated by so-
lar panels. Rotating the satellite would then also mean
to bring the solar panels out of optimal alignment with
the sun, which is another counter argument for using a
parabolic antenna, not to mention the effects of shad-
owing of the solar panels.

It thus seems more reasonable to use dipole-array an-
tennas for the pulsar observations. Single dipole anten-
nas organized, e.g., as antenna patches could be used
to build a larger phased array antenna. Such a phased
array would still be large and heavy, though. Depend-
ing on the frequency, 104–105 single patches are re-
quired. ere have been no phased-array antennas of
that size been build for use in space so far, although
smaller prototypes exist [26]. From them one may es-
timate the weight of such antenna arrays. Assuming
an antenna thickness of 1 cm and an averaged density
of the antenna material of 0.1 g/cm3 still yields an an-
tenna weight of 170 kg for the 170m2 patched antenna
array. e signals from the single dipole antennas have
to be correlated in phase to each other, which means
that all patches have to be connected to each other by
a wired mesh and phase correlators. If this phase cor-
relation and the real-time coherent correction for the
pulse broadening by interstellar dispersion is done by
software, it requires a computer with a Terra-flop GPU
of about 500W power consumption. A clear advantage
of a phased antenna array would be that it allows to ob-
serve different pulsars located in different sky regions
at the same time. at means of course that such an
antenna can be smaller if the same S/N ratio is to be
achieved for a number Nsources of sources within a given
time. With a single-dish antenna one would have to in-
crease its diameter byN1/4

sources if these had to be observed
within the same given time interval.

5 Using X-ray Signals from Pulsars for
Spacecraft Navigation

e increasing sensitivity of the X-ray observatories
ROSAT, RXTE, XMM-Newton and Chandra allowed
for the first time to explore in detail the X-ray emis-
sion properties of a larger sample of rotation-powered
pulsars. e discovery of pulsed X-ray emission from
millisecond pulsars [12], the determination of the X-
ray efficiency of rotation-powered pulsars [13] as well
as discoveries of X-ray emission from various pulsars
(e.g., [14, 10, 11]) and their detailed spatial, spectral and
timing studies are just a few of many accomplishments
worth mentioning in this context (e.g., [46, 39, 55, 28,
8, 35]). With these new results at hand it was only nat-
ural to start looking at their applicability to, e.g., space-
craft navigation based on X-ray data from pulsars. e
prospects of this application are of even further interest
considering that low-mass X-ray mirrors, which are an
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important requirement for a realistic implementation of
such a navigation system, have been developed for future
X-ray observatories.

Given the observational and systematical limitations
mentioned above it was a question of general interest,
which we found not considered with sufficient gravity in
the literature, whether it would be feasible to navigate a
spaceship on arbitrary orbits by observing X-ray pulsars.

In order to address the feasibility question we first de-
termined the accuracy that can be achieved by a pulsar-
based navigation system in view of the still limited in-
formation we have today on pulse profiles and absolute
pulse phases in the X-ray band. To overcome the lim-
itations introduced by improper fitting functions, un-
defined pivot points of pulse peaks and phase shifts by
an unmodeled energy dependence in the pulsed signal,
we constructed pulse profile templates for all pulsars for
which pulsed X-ray emission is detected. Where sup-
ported by photon statistics, templates were constructed
for various energy ranges. ese energy ranges were
chosen in order to optimize the S/N ratio of the pulsed
signal while sampling as much as possible of the energy
dependence of the X-ray pulses.

In the literature various authors applied different
analysis methods and often used different definitions for
pulsed fraction and pulse peak pivot points. Reanalyz-
ing all data from X-ray pulsars available in the public
XMM-Newton, Chandra and RXTE data archives was
therefore a requirement to reduce systematic uncertain-
ties that would have been introduced otherwise. e re-
sult is a database containing the energy dependent X-ray
pulse profiles, templates and relevant timing and spec-
tral properties of all X-ray pulsars that have been de-
tected so far [47, 21].

According to the harmonic content of an X-ray pulse
the templates were obtained by fitting the observed
pulse profiles by series of Gaussian and sinusoidal func-
tions. e database further includes information on the
local environment of a pulsar, i.e., whether it is sur-
rounded by a plerion, supernova remnant or whether it
is located in a crowded sky region like a globular clus-
ter. e latter has a severe impact on the detectability
of the X-ray pulses as it reduces the S/N ratio of the
pulsed emission by the DC emission from background
sources. is in turn is important for the selection of
the optimal pulsars that emit pulses, e.g., in the hard
band (above ≈ 3 keV) in order to blend away the softer
emission from a supernova remnant or plerion.

e pulse profile templates allow us to measure pulse
arrival times with high accuracy even for sparse photon

statistics by using a least-square fit of an adequately ad-
justed template. e error of pulse-arrival-time mea-
surements is dominated by the systematic uncertainty
that comes with the limited temporal resolution of the
observed pulse profiles used to construct the templates.
e statistical error in fitting a measured profile by a
template was found to be much smaller in all cases.
Assuming that the temporal resolution of the detector
is not the limiting factor, the temporal resolution of a
pulse profile is given by the widths of the phase bins
used to represent the observed X-ray pulse. e bin
width, or the number of phase bins applied, is a com-
promise between maximizing the S/N ratio per phase
bin while sampling as much of the harmonic content as
possible. Denoting the Fourier-power of the i-th har-
monic by Ri and taking m as the optimal number of
harmonics deduced from the H-test [27], an exact ex-
pression for the optimal number of phase bins is given
by M = 2.36(

∑m
i=1 i

2R2
i)

1/3 [14]. is formula com-
promises between information lost due to binning (i.e.,
zero bin width to get all information), and the effect
of fluctuations due to finite statistics per bin (i.e., bin
width as large as possible to reduce the statistical error
per bin). e total error (bias plus variance) is mini-
mized at a bin width of 1/M. We applied this in the
reanalysis of pulse profiles in our database. Pulsed frac-
tions were computed by applying a bootstrap method
[14], which again leads to results that are not biased by
the observers “taste” on where to assume the DC level
in a profile.

e minimal systematic phase uncertainty for the
pulse profile templates in our database is of the order
of 0.001 [18]. is uncertainty multiplied by the rota-
tion period P of the pulsar yields the uncertainty in pulse
arrival time due to the limited information we have on
the exact X-ray pulse profile. Multiplying this in turn
by the speed of light yields the spacecraft’s position er-
ror along the line of sight to the pulsar. It is evident
by the linear dependence on P that millisecond pulsars
are better suited for navigation than those with larger
rotation periods.

e precision of a pulsar-based navigation system
thus strongly depends on the choice of pulsars and the
accuracy of pulse arrival measurements, which is sub-
ject to the quality of the available templates, accuracy
of the on-board clock and clock calibration. As men-
tioned above, in order to obtain three-dimensional po-
sition information, timing of at least three different pul-
sars has to be performed. e spatial arrangement of
these pulsars is another parameter of the achievable ac-
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curacy. Our simulations show that the systematic error
of position determination can be reduced significantly
by choosing a pulsar triple that is optimal in the sense
that the pulsars are nearly perpendicular to each other.
Since a pulsar might be obscured by the sun or a planet
and, therefore, its availability for navigation depends on
the current position of the spacecraft, the optimal pulsar
triple has to be selected from a ranking of possible pul-
sar combinations. e following Table 1 represents the
ranking of pulsar combinations, which according to our
analysis provide the highest position accuracy via pulsar
navigation [18].

Rank Pulsar 3-Combination
1 B1937+21 B1821−24 J0030+0451
2 B1937+21 B1821−24 J1023+0038
3 B1821−24 J0030+0451 J0437−4715
4 B1937+21 J1023+0038 J0218+4232
5 B1821−24 J1023+0038 J0437−4715
6 B1937+21 J0030+0451 J0218+4232
7 B1937+21 B1821−24 J0437−4715
8 B1937+21 J0218+4232 J0437−4715
9 B1821−24 J0218+4232 J0437−4715
10 J1023+0038 J0218+4232 J0437−4715

T . Ranking of pulsar 3-combinations according to the po-
sition accuracy achievable when using them in a navigation system
based onf X-ray pulsars . All listed sources are solitary millisecond
pulsars except J0437−4715, which is in a binary.

For the pulsars ranked highest in Table 1 we found
position errors of about 5 km as a lower limit (cf. Fig-
ure 8). e ranking is independent from a specific
spacecraft orbit, but was obtained under the assumption
that the navigation system is capable of measuring pulse
profiles with the same level of detail and accuracy as the
ones used in the simulation. Indeed, this is a severe limi-
tation as those pulse profiles where obtained by powerful
X-ray observatories like XMM-Newton and Chandra.
It is unlikely, due to weight constraints and power limi-
tations, that a navigation system will have similar capac-
ities in terms of collecting power, temporal resolution
and angular resolution.

An improved accuracy can be achieved by means of
pulse profile templates of better quality. is, in turn,
calls for deeper pulsar observations by XMM-Newton
or Chandra as long as these observatories are still avail-
able for the scientific community. It would be a valu-
able task worthwhile the observing time, especially as
it is unclear what missions will follow these great ob-
servatories and whether they will provide detectors with

F . Spacecraft position error as a function of possible pulsar
3-combinations. e diagram shows the mean position errors and
standard deviations for the best 30 combinations. From Bernhardt
et al. [18].

sufficient temporal resolution and on-board clock accu-
racy.

We extended our simulations in order to constrain
the technological parameters of possible navigation sys-
tems based on X-ray pulsars. e result of this ongoing
project will be a high-level design of a pulsar naviga-
tor that accounts for boundary conditions (e.g., weight,
cost, complexity and power consumption) set by the re-
quirements of a specific spacecraft and mission design.

e chart shown in Figure 9 illustrates the work logic
of our current simulations. Navigator boundary condi-
tions (1) and spacecraft orbit (2) are predefined and con-
strain the technology parameters (3) of the navigator’s
X-ray detector, mirror system and on-board electron-
ics. Examples of parameters that will be analyzed in the
simulations are detector technology, temporal and en-
ergy resolution, on-board-clock accuracy and stability,
mirror technology along with collecting power, angular
and spatial resolution, focal length, field of view – just
to mention the most important ones.

Given their X-ray emission properties some pulsars
may not be detectable by the navigator because of its
limited angular resolution and sensitivity. e proper-
ties of the detector andmirror system along with the tra-
jectory of the virtual navigator thus determine the set of
available pulsars (5), from which a suitable selection has
to be made (6) according to a predefined ranking of pul-
sar triples. Using an X-ray-sky simulator (7), which was
developed to simulate observations of the future X-ray
observatories eROSITA and IXO and which we have
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F . Work flow and logic of the simulations performed for a technology requirement study and demonstrator high-level design of
a pulsar-based navigator.
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modified to include the temporal emission properties of
X-ray pulsars, we will be able to create X-ray datasets in
FITS-format with temporal, spatial and energy infor-
mation for the pulsars observed by our virtual navigator.
e simulated event files have the same standard FITS-
format as those of XMM-Newton and/or Chandra, so
that standard software can be used to analyze these data.
An autonomous data reduction will then perform the
data analysis and TOA measurement in order to ob-
tain the position and velocity of the virtual observer (8).
Correlating the result with the input trajectory (9) yields
the accuracy of the simulated measurements for a given
spacecraft orbit (10), and hence the overall performance
of the navigator as a function of the specified detector
and mirror system (11,12).

6 X-ray Detector and Mirror Technology
for Pulsar-Based Navigation

e design of an X-ray telescope suitable for navigation
by X-ray pulsars will be a compromise between angular
resolution, collecting area and weight of the system. e
currently operating X-ray observatories XMM-Newton
and Chandra have huge collecting areas of 0.43 m2 and
0.08 m2 (at 1 keV), respectively [33, and references
therein] and, in the case of Chandra, attain very good
angular resolution of less than 1 arcsecond. eir fo-
cusing optics and support structures, however, are very
heavy. To use their mirror technology would be a show-
stopper for a navigation system.

In recent years, ESA and NASA have put tremen-
dous effort into the development of low-mass X-ray
mirrors, which can be used as basic technology for fu-
ture large X-ray observatories and small planetary explo-
ration missions. Table 2 summarizes the angular resolu-
tion and mass of X-ray mirrors used for XMM-Newton
and Chandra as well as developed for future X-ray mis-
sions. e light-weighted mirrors are of special interest
for an X-ray pulsar-based navigator.

Angular Mass per effective
resolution area (at 1 keV)

Chandra 0.5 ′′ 18 500 kg/m2

XMM-Newton 14 ′′ 2300 kg/m2

Silicon Pore Optics 5 ′′ 200 kg/m2

Glass Micropore Optics 30 ′′ 25 kg/m2

T . Comparison of current and future X-ray-mirror optics.
From Bavdaz et al. [5].

A typical high-resolution X-ray telescope uses focus-
ing optics based on the Wolter-I design [56]. e in-
coming X-ray photons are reflected under small angles
of incidence in order not to be absorbed and are fo-
cused by double reflection off a parabolic and then a hy-
perbolic surface. is geometry allows for nesting sev-
eral concentric mirror shells into each other in order
to enlarge the collecting area and thereby improve the
signal-to-noise ratio. A novel approach to X-ray op-
tics is the use of pore structures in a Wolter-I configu-
ration [6, 5, 16]. X-ray photons that enter a pore are
focused by reflections on the walls inside the pore. In
contrast to traditional X-ray optics with separate mir-
ror shells that are mounted to a support structure, pore
optics form a monolithic, self-supporting structure that
is lightweight, but also very stiff and contains many re-
flecting surfaces in a compact assembly. Two different
types of pore optics have been developed, based on sili-
con and glass.

• Silicon Pore Optics [24, 25, 1] use commercially
available and mass produced silicon wafers (Fig-
ure 10a) from the semiconductor industry. ese
wafers have a surface roughness that is sufficiently
low to meet the requirements of X-ray optics. A
chemo-mechanical treatment of a wafer results in a
very thin membrane with a highly polished surface
on one side and thin ribs of very accurate height
on the other side. Several of these ribbed plates are
elastically bent to the geometry of a Wolter-I sys-
tem, stacked together to form the pore structure
and finally integrated into mirror modules (Fig-
ure 10a). Silicon Pore Optics are intended to be
used on large X-ray observatories that require a
small mass per collecting area (on the order of 200
kg/m2) and angular resolution of about 5 arcsec-
onds or better.

• Glass Micropore Optics [15, 23, 54] are made
from polished glass blocks that are surrounded by a
cladding glass with a lower melting point. In order
to obtain the high surface quality required for X-
ray optics, the blocks are stretched into small fibers,
thereby reducing the surface roughness. Several of
these fibers can be assembled and fused into multi-
fiber bundles. Etching away the glass fiber cores
leads to the desired micropore structure, in which
the remaining cladding glass forms the pore walls
(Figure 10b). e Wolter-I geometry is repro-
duced by thermally slumping separate multi-fiber
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F . Silicon pore optics (a) and glass micropore optics (b)
represent novel developments for light-weighted X-ray mirrors of
the next generation of X-ray observatories. Both mirror types will
be used in Wolter-I configuration (c) to focus X-rays in a double
reflection. Images from Bavdaz et al. [6, 7, 5].

plates. Glass Micropore Optics are even lighter
than Silicon Pore Optics, but achieve a moderate
angular resolution of about 30 arcseconds. ey
are especially interesting for small planetary ex-
ploration missions, but also for X-ray timing mis-
sions that require large collecting areas. e first
implementation of Glass Micropore Optics on a
flight program will be in the Mercury Imaging X-
ray Spectrometer on the ESA/JAXA mission Bepi-
Colombo, planned to launch in 2014 [32].

Today’s detector technology, as in use on XMM-
Newton and Chandra, is not seen to provide a detector
design that is useful for a navigation system based on X-
ray pulsars. Readout noise, limited imaging capability in
timing-mode and out-of-time events invalidate CCD-

based X-ray detectors for application as X-ray-pulsar
navigator. Detectors like those on RXTE that need
gas for operation are also not suitable, given the lim-
ited live time due to consumables. However, there are
novel and promising detector developments performed
in semiconductor labs for the use in the next genera-
tion of X-ray observatories. Two challenging examples,
which are of potential interest for navigation, are:

• Silicon Drift Detectors (SDDs) have only lim-
ited imaging capability but provide an energy res-
olution and are capable of managing high count-
ing rates of more than 2 × 106 cts/s. A detec-
tor based on this technology was proposed for the
High Time Resolution Spectrometer on IXO [3].
e detector technology itself has a high tech-
nical readiness. SDD-modules developed in the
Semiconductor Lab of the Max Planck Society are
working already in the APXS (Alpha Particle X-
ray Spectrometer) on-board NASA’s Mars Explo-
ration Rovers Spirit and Opportunity and on the
comet lander ROSETTA [41]. Detectors based on
an SDD technology could be of use, e.g., in design-
ing a navigator for a very specific orbit, for which
it is sufficient to navigate according to the signals
of pulsars that emit their pulses in the hard X-ray
band mostly so that the missing imaging capability
does not cause any restrictions on the S/N ratio of
the pulsed emission.

• Active Pixel Sensors (APS) are an alternative and
perhaps more flexible technology (cf. Figure 11),
which was the proposed technology for the Wilde
Field Imager on IXO [50] and the Low-Energy
Detector (LED) on Simbol-X [40]. is detector
provides images in the energy band 0.1–25 keV,
simultaneously with spectrally and time resolved
photon counting. e device, which is under de-
velopment in the MPE Semiconductor Labora-
tory, consists of an array of DEPFET (Depleted
p-channel FET) active pixels, which are integrated
onto a common silicon bulk. e DEPFET con-
cept unifies the functionalities of both sensor and
amplifier in one device. It has a signal charge
storage capability and is read out demand. e
DEPFET is used as unit cell of Active Pixel Sen-
sors (APSs) with a scalable pixel size from 50µm
to several mm and a column-parallel row-by-row
readout with a short signal processing time of 6
4µsec per row. As the pixels are individually ad-
dressable the DEPFET APS offers flexible readout
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strategies from standard full-frame mode to user-
defined window mode.

F . Mechanical sample of an Active Pixel (here 6-inch
wafer-scale) detector. Plotted over one hemisphere is the logical
layout of the detector. It consists of roughly 1024 × 1024 pixels
of 100 × 100 µm2 size. From Lechner et al. [41].

e typical weight and power consumption of these de-
tectors can be estimated from the prototypes proposed
for IXO and Simbol-X. e IXO Wide Field Imager
with its 17 arcmin field of view and 1024 × 1024 pixel
design had an energy consumption of6 22 W. e Low
Energy Detector on Simbol-X had 128×128 pixels and
an energy consumption of 6 8 W. Power consumption
including electronics, filter wheel and temperature con-
trol was ca. 250 W. e mass of the focal plane, includ-
ing shielding and thermal interface, was about 15 kg but
could be reduced in a more specific design of an X-ray-
pulsar navigator.

7 Concluding Remarks

e knowledge of how to use stars, planets and stel-
lar constellations for navigation was fundamental for
mankind in discovering new continents and subduing
living space in ancient times. It is fascinating to see
how history repeats itself in that a special population
of stars may play again a fundamental role in the future
of mankind by providing a reference for navigating their
spaceships through the Universe (cf. Figure 12).

In the paper we have shown that autonomous space-
craft navigating with pulsars is feasible when using ei-
ther phased-array radio antennas of at least 150m2 an-
tenna area or compact light-weighted X-ray telescopes
and detectors, which are currently developed for the next
generation of X-ray observatories.

Using the X-ray signals from millisecond pulsars we
estimated that navigation would be possible with an ac-
curacy of ±5 km in the solar system and beyond. e
error is dominated by the inaccuracy of the pulse profiles
templates that were used for the pulse peak fittings and
pulse-TOA measurements. As those are known with
much higher accuracy in the radio band, it is possible to
increase the accuracy of pulsar navigation down to the
meter scale by using radio signals from pulsars for nav-
igation.

e disadvantage of radio observations in a naviga-
tor, though, is the large size and mass of the phased-
antenna array. As we saw in § 4, the antenna area is
inversely proportional to the square root of the integra-
tion time; i.e., the same signal quality can be obtained
with a reduced antenna size by increasing the observa-
tion time. However, the observing time is limited by the
Allen variance of the receiving system and, therefore,
cannot become arbitrarily large. In addition, irradiation
from the on-board electronics requires an efficient elec-
tromagnetic shielding to prevent signal feedback. is
shielding will further increase the navigator weight in
addition to the weight of the antenna.

e optimal choice of the observing band depends
on the boundary conditions given by a specific mission.
What power consumption and what navigator weight
might be allowed for may determine the choice for a
specific wave band.

In general, however, it is clear already today that this
navigation technique will find its applications in future
astronautics. e technique behind it is very simple and
straightforward, and pulsars are available everywhere in
the Galaxy. Today≈ 2200 pulsars are known. With the
next generation of radio observatories, like the SKA, it
is expected to detect signals from about 20 000 to 30 000
pulsars [49].

Finally, pulsar-based navigation systems can operate
autonomously. is is one of their most important ad-
vantages, and is interesting also for current space tech-
nologies; e.g., as augmentation of existing GPS/Galileo
satellites. Future applications of this autonomous navi-
gation techniquemight be on planetary explorationmis-
sions and on manned missions to Mars or beyond.
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Abstract. We analyze the relativistic restricted
two-body problemwith spin employing a Lie series
perturbation theory. Taking into full account the
complex interplay between the various relativistic
effects, we provide a new explicit solution of the
averaged equations of motion in terms of elliptic
functions. is result is then applied to the case
to gravity Probe B recovering the standard results.
e possible impact on the development of rela-
tivistic positioning systems is briefly discussed.

1 Introduction

One of the most important applications of General Rel-
ativity is the understanding of the effect that the curva-
ture of the spacetime has on the motion of celestial ob-
jects. e reason behind such statement can be found
in the accuracy with which data on the motions of ce-
lestial bodies is nowadays acquired. Future space mis-
sions hold the promise to ameliorate even further this
accuracy. It is natural, then, to strengthen the efforts in
the understanding of Post-Newtonian mechanics and to
approach the resolution of the many unresolved prob-
lems in this field of research. Recently the authors of
this contribution used Lie series perturbation theory to
perform a reanalysis of the reduced to body problem at
1PN approximation [5] finding an exact solution. e

*E-mail: bluescarni@gmail.com
†Corresponding author. E-mail: sante.carloni@esa.int

purpose of this paper is to review this result, and discuss
the possible future application of these result to Rela-
tivistic Positioning Systems.

2 Hamiltonian formulation

e starting point of our derivation is the well-known
1PN Hamiltonian of the reduced (m2 ≫ m1 and
|J2| ≫ |J1|) two-body problem with spin, which, af-
ter reduction to the centre-of-mass coordinate system,
reads [2, 3, 6]

H = HN + ϵH1. (1)

Here ϵ = 1/c2 is chosen as the “smallness parameter”
of our perturbation theory and

HN =
1
2
J2

1

I1
+

1
2
J2

2

I2
+

p2

2µ
−

GMµ

r
(2)

is the Newtonian Hamiltonian (representing the unper-
turbed problem). H1 is defined as

H1 = HPN +HSO +HSS, (3)
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where

HN =
1
2
J2

1

I1
+

p2
1

2m1
−

Gm1m2

r
,

HPN = m1

(
−

1
8
p4

1

m4
1
−

3
2
Gm2

r

p2
1

m2
1
+

G2m2
2

2r2

)
,

HSO =
2G
r3

(
3
4
m2

m1
J1 + J2

)
· (r × p1) ,

HSS =
G

r3 [3 (J1 · n) (J2 · n) − J1 · J2] ,

(4)

where J2 is now considered as a constant of motion that
can be dropped fromHN. In our approximation the ori-
gin of the coordinate system coincides with the body 2.
Without loss of generality, we can orient the reference
system in such a way that the constant J2 is aligned to
the positive z axis, so that

J2 = (0, 0, J2) , (5)

with J2 = |J2|.
Let us now express the Hamiltonian in a coordinate

system of action-angle variables [1] for the unperturbed
problem. We choose the Delaunay elements for the or-
bital variable whereas the rotational degrees of freedom
will be represented by the Serret-Andoyer (SA) variables
[10]. Both sets of variables are introduced formally as
canonical transformations¹.

e Delaunay arguments (L,G,H, l,g,h) can be in-
troduced via the following standard relations [14]:

L =
√
Gm2a, l = M,

G = L
√

1 − e2, g = ω,
H = G cos i, h = Ω.

(6)

Here a, e, i,M,ω andΩ are the classical Keplerian or-
bital elements describing the trajectory of the secondary
body m1 around the primary m2. e Keplerian ele-
ments are in turn related to the cartesian orbital momen-
tum p1 and position r via well-known relations (e.g., see
[15]). In eqs. (6), (L,G,H) play the role of generalised
momenta, (l,g,h) are the generalised coordinates.

¹Note that the post-Newtonian canonical Hamiltonian momenta
will differ from the Newtonian ones by terms of order 1/c2. is
discrepancy will carry over to any subsequent canonical transforma-
tion, including the introduction of Delaunay and SA elements. e
detailed connection between Newtonian and post-Newtonian Delau-
nay orbital elements can be found in[17] and [11]. However, in the
present work we are concerned with the secular variations of orbital
and rotational elements, for which the discrepancy discussed above is
of little consequence.

e Serret-Andoyer (SA) [10] variables describe the
rotational motion of a rigid body in terms of orientation
angles and rotational angular momentum. In our spe-
cific case, these variables are obtained in terms of J1, so
that the generalized momenta are

G̃ = |J1| /m1

H̃ = G̃ cos I
(7)

where cos I = J1,z/ |J1| (J1,z is the z component of
the rotational angular momentum in the centre-of-mass
reference system) and, of the conjugate coordinates(
g̃, h̃

)
, h̃ is nodal angle of spin J1, the angle g̃ con-

jugated to the G̃. Note that g̃ does not appear in the ex-
pression of the Hamiltonian and |J1| is thus conserved.

We can now express the Hamiltonians (4) in terms of
Delaunay and SA arguments, dividing the Hamiltonian
and the generalised momenta by m1 (extended canoni-
cal transformation).

e resulting expressions for HN and H1 in
terms of the momenta

(
L,G,H, G̃, H̃

)
and coordinates(

l,g,h, g̃, h̃
)

are given in [5]. With this expression
we can analyse the Hamiltonian using the Lie series
method.

3 Lie Series analysis

e Lie series perturbative methodology [12, 7] aims
at simplifying the Hamiltonian of the problem via a
quasi-identity canonical transformation of coordinates
depending on a generating function χ to be determined.
e Lie series transformation reads

H′ = SϵχH =

∞∑
n=0

ϵn

n!
Ln

χH, (8)

where Ln
χ is the Lie derivative of n-th order with gen-

erator χ, H′ is the transformed Hamiltonian, and H is
the original Hamiltonian in which the new momenta
and coordinates have been formally substituted. At the
first order in ϵ the Lie derivative degenerates to a Pois-
son bracket, and the transformation becomes

H′ = HN + ϵ ({HN,χ}+H1)︸ ︷︷ ︸
K

+O
(
ϵ2) . (9)

We need then to solve the homological equation [1]

{HN,χ}+H1 = K, (10)
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where χ and K (the new perturbed Hamiltonian result-
ing from the transformation of coordinates) have to be
determined with the goal of obtaining some form of
simplification in K. Since the unperturbed Hamilto-
nian depends only on the two actions L and G̃, we have

{HN,χ} = −
∂HN

∂L

∂χ

∂l
= −

G2m2
2

L3

∂χ

∂l
, (11)

where the partial derivative of χ with respect to g̃ (the
coordinate conjugated to G̃) can be set to zero as G̃ is
a constant of motion. e homological equation (10)
then reads

χ =

∫
L3

G2m2
2
(H1 −K)dl. (12)

e technical aspects of the solution of this integral, in-
cluding the choice of K, are detailed in [5]. Here we
will limit ourselves to the following considerations:

• the integral in eq. (12) essentially represents an av-
eraging over the mean motion l. Consequently,
the new momenta and coordinates generated by
the Lie series transformation are the mean coun-
terparts of the original momenta and coordinates;

• the functional form of Hamiltonians in terms of
Delaunay and SA variables guarantees that the av-
eraging procedure removes at the same time both l

and g from the averaged Hamiltonian;

• the integration is performed in closed form, that
is, without resorting to Fourier-Taylor expansions
in terms of mean anomaly and eccentricity [8, 16].
e results are thus valid also for highly-eccentric
orbits.

e computations involved in the averaging proce-
dure have been carried out with the Piranha com-
puter algebra system [4]. As usual when operat-
ing with Lie series transformations, from now on
we will refer to the mean momenta and coordinates(
L′,G′,H′, G̃′, H̃′) and

(
l′,g′,h′, g̃′, h̃′) with their

original names
(
L,G,H, G̃, H̃

)
and

(
l,g,h, g̃, h̃

)
, in or-

der to simplify the notation.
After having determined χ from eq. (12), the aver-

aged Hamiltonian generated by eq. (10) reads, in terms
of mean elements,

H′ = HN + ϵ
[
E0 + E1 cos

(
h̃− h

)]
, (13)

where E0 and E1 are given in [5].

Applying the transformation

H̃∗ = H+ H̃, (14)
h∗ = h− h̃, (15)

we can further reduce the degrees of freedom so that the
final averaged Hamiltonian reads

H′ = HN + ϵ (F0 + F1 cosh∗) , (16)

where F0 and F1 are functions of the mean momenta
only,

F0 =
1
2
J2G

4H̃∗m2
3

G3L3 +
3
2
H3J2G

4m2
3

G5L3

+
15
8
G4m2

4

L4 +
3
2
HJ2G

4m2
3

G3L3

−
3
2
H2J2G

4H̃∗m2
3

G5L3 −
3
2
H2G4m2

4

G3L3

+
3
2
HG4H̃∗m2

4

G3L3 − 3
G4m2

4

GL3 , (17)

F1 = −
3
2
GxyHJ2G

4G̃xy∗m2
3

G5L3

+
3
2
GxyG

4G̃xy∗m2
4

G3L3 , (18)

and G̃xy∗ is expressed in terms of the new mean mo-
mentum H̃∗:

G̃xy∗ =

√
G̃2 −

(
H̃∗ −H

)2
. (19)

e one degree-of-freedom averaged Hamiltonian
(16) is expressed in terms of the mean momenta(
L,G,H, G̃, H̃∗

)
and the conjugatemean coordinateh∗.

erefore the form equations of motion (see [5] for their
detailed form) implies the conservation of all mean mo-
menta apart from H. In particular, the conservation of
the mean momentum H̃∗ = H + H̃ corresponds to the
conservation of the z component of the total mean an-
gular momentum of the system.

Using the Hamiltonian (16) it is possible to describe
as subcases all the classical relativistic effect on the mo-
tion of the reduced two body problem like, for example,
the Lens irring effect of the geodesic effect. A de-
tailed derivation of these effect can be found in [5].

4 An exact solution forH (t)

We now derive an analytical solution for the time varia-
tion of H. e availability of a closed-form solution for

DOI: 10.2420/AF07.2013.29 31



Acta Futura 7 (2013) / 29-34 F. Biscani and S. Carloni

H (t) allows to obtain immediately the time evolution
of cosh∗ via inversion of the Hamiltonian (16)². With
H (t) and cosh∗ (t) it is then possible in principle to
integrate the equations of motion for the remaining co-
ordinates. Additionally, the analytical expression will
allow us to calculate exactly the period of the oscillatory
motion of H (t) and to make quantitative predictions
about the behaviour of real physical systems in §5.

Recalling the form of the Hamiltonian (16) and com-
bining it with the equation for H,

dH

dt
= ϵF1 sinh∗, (20)

we have

dH

dt
= ±

√
ϵ2F2

1 − (H′ −HN − ϵF0)
2, (21)

where H′ is the Hamiltonian constant (whose value is
computed by substituting the initial values of the canon-
ical variables in eq. (16)), and with the understanding
that the plus sign is now to be taken when ϵF1 and
sinh∗ have the same sign. e polynomial under square
root of (21) can be proven to be quartic in H. erefore
we can write it as [18]

f4 (H) = ϵ2F2
1 − (H′ −HN − ϵF0)

2

= a4 + 4a3H+ 6a2H
2 + 4a1H

3

+ a0H
4, (22)

and rewrite eq. (21) as

∫H
H0

± dx√
f4(x)

=

∫t
t0

dτ, (23)

where H0 is the initial value of H and t0 the initial time.
e coefficients of f4 (H) are reproduced in full form in
[5]. e left-hand side of this equation is, apart from
the sign ambiguity, an elliptic integral in standard form

²is, of course, is not possible if singular equilibrium points are
present or if we are dealing with the indeterminate forms arising when
the nodal angles are undefined.

and can be solved to give (see [18], §20.6)

H (t) = H0 +

(
2
[
℘ (t) −

1
24

f′′4 (H0)

]2

−
1
48

f4 (H0) f
iv
4 (H0)

)−1

·
{

1
2
f′4 (H0)

[
℘ (t) −

1
24

f′′4 (H0)

]
+

1
24

f4 (H0) f
′′′
4 (H0)

±
√
f4 (H0)℘

′ (t)
}

, (24)

where ℘ (z) ≡ ℘ (z;g2,g3) is a Weierstrass elliptic
function defined in terms of the invariants

g2 = a0a4 − 4a1a3 + 3a2
2, (25)

g3 = a0a2a4 + 2a1a2a3 − a3
2 − a0a

2
3 − a2

1a4, (26)

the derivatives of f4 are intended with respect to the
polynomial variable, the ± sign is chosen based on the
initial signs of sinh∗and F1, and we set the initial time
t0 = 0 for convenience.

e Weierstrass function is always a real valued func-
tion and it can be periodic or non-periodic depending
on the values of g [5]. If g2 > 0, g3 > 0 and ∆ = 0
℘ (t) simplifies to a simple periodic function whose pe-
riod depends on the value of the parameters g. An inter-
esting application of this limit is the case of the geodetic
precession. In this case the coefficients a0 and a1 of the
quartic polynomial f4 (H) are both zero, and thus

g2 = 3a2
2, (27)

g3 = −a3
2, (28)

with

a2 = −
1
2
ϵ
m4

2G
4H′

G3L3 +
15
16

ϵ2 m
8
2G

8

G3L7

+
1
4
ϵ
G̃2m4

2G
4I1

G3L3 −
15
8
ϵ2 m

8
2G

8

G4L6

−
3
8
ϵ2 G̃

2m8
2G

8

G6L6 −
1
4
ϵ
m6

2G
6

G3L5 ,

and the modular discriminant ∆ is also null. Since, by
substitution of H′, one obtains

a2 = −
3
8
ϵ2 m

8
2G

8

L6G6

[
G2 − 2H2

0 + 2H0H̃∗

+G̃2 + 2Gxy,0G̃xy,0 cosh∗,0
]
> 0, (29)
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(the zero subscript represents initial values), because the
quantity in the square brackets is the square of the mag-
nitude M of the total mean angular momentum vector.
As consequence, g3 is always positive and the behaviour
of H (t) is restricted to be purely periodic and the angu-
lar velocity of the periodic motion of H (t) is

T =
3
2
ϵ
m4

2G
4

L3G3 M (30)

which is in agreement with the precessional angular ve-
locity calculated for the geodetic effect.

5 Application to physical systems

At this point we can use the new solutions to deduce the
behaviour of real physical systems. It is clear that, be-
cause of our initial assumptions, we can consider highly
idealised cases and the aim will be only to highlight the
role that relativistic effects play in the long term. e
most interesting of these effects is the fact that the spin-
orbit and spin-spin couplings induce periodic oscilla-
tions of the mean orbital plane and, at the same time,
of the mean spin vector. Such effects are typically small
for the orbital plane, but, because of the conservation
of the z component of the total angular momentum H̃∗,
they correspond to non-negligible oscillations in the ori-
entation of the mean spin.

In [5] some interesting concrete examples were con-
sidered using the mpmath multiprecision library [13].
Here we summarize briefly the case of Gravity Probe
B. Before starting it is worth to to point out that the
perturbative treatment outlined in the previous sections
produces results in terms of the components of the mean
angular momentum vectors with respect to a fixed (non-
rotating) centre-of-mass reference system (rather than
in terms of obliquity and relative orientations). ere-
fore, in the geometrical interpretations of our results, we
will always be referring to absolute (as opposed to rela-
tive) orientation angles.

5.1 Earth-orbiting gyroscope: Gravity probe B

Let us consider the gravitomagnetic effects on a gyro-
scope in low-orbit on board of a spacecraft around the
Earth. e parameters of the system are taken from the
experimental setup of the Gravity Probe B mission [9]:
the orbit is polar (i = 90.007◦) with a semi-major axis of
7027 km and low eccentricity (e = 0.0014). e gyro-
scope consists of a rapidly rotating quartz sphere (38mm

diameter) whose spin axis is lying on the Earth’s equa-
torial plane (i.e., the spin plane is also “polar”). e spin
vector of the gyroscope and the orbital angular momen-
tum vector of the spacecraft, both lying on the equatorial
plane, are perpendicular to each other. Translated into
mean Delaunay and Serret-Andoyer parameters, this
initial geometric configuration implies H ∼ 0, H̃∗ ∼ 0,
Gxy ∼ G, G̃xy∗ ∼ G̃ and h∗ = ±π/2 (with the sign
depending on the values of h and h̃ – note that in [9]
the configuration shown in Fig. 1 implies h∗ = −π/2).
e substitution of these values in the general formula
for H (t) yields a period of roughly 195 ka. e solu-
tion includes the expected frame-dragging precession,
which, after substitution of the appropriate numerical
values, amounts to circa 0.04′′ per year [9]. e effect
corresponds to a movement of the mean spin axis of the
gyroscope along the equatorial plane in the direction of
the rotation of the Earth. e other reproduced rela-
tivistic motion is the geodetic effect, which is a drift of
themean spin axis on the orbital plane in the direction of
the orbital motion. Substitution of the numerical values
in this formula yields the expected value of circa ±6.6′′

per year.

6 Conclusions

From the consideration above it is clear that Lie series
perturbation theory can lead to the discovery of interest-
ing aspects of Post-Newtonian gravitation which were
so far unknown or poorly understood. e role that
these results have in terms of the development of Rela-
tivistic Positioning Systems lays basically in the fact that
RPS in its present formulation requires a characteriza-
tion of the motion of the satellites in the spacetime gen-
erated by Earth. erefore the possibility to refine our
knowledge of the Post-Newtonian dynamics translates
directly in an improvement in the accuracy of RPS. It is
worth to stress, however, that the work describe above
refers explicitly to the problem of two bodies, while a
RPS requires at least five (Earth, or other large body
and four satellites). Although it seems unrealistic to ob-
tain an exact solution in this complicated case there is no
fundamental limitation in Lie series perturbation theory
to its treatment. We feel therefore that Lie perturba-
tions can be ascribed as a key tool in the development of
a “realistic” RPS.
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Abstract. Relativistic positioning systems are
interesting technical objects for applications around
the Earth and in the Solar system. But above all
else, they are basic scientific objects allowing devel-
oping relativity from its own concepts. Some past
and future features of relativistic positioning sys-
tems, with special attention to the developments
that they suggest for an epistemic relativity (rela-
tivistic experimental approach to physics), are ana-
lyzed. is includes relativistic stereometry, which,
together with relativistic positioning systems, al-
lows to introduce the general relativistic notion of
(finite) laboratory (space-time region able to per-
form experiments of finite size).

1 Introduction

Relativistic positioning systems were born as scientific
objects.¹ But many people consider them as technical
objects,² a sort of classical positioning systems directly
modeled in relativity. Anyway, their handle is not easy,
neither as scientific objects nor as technical ones. is
is why to meet all of us together and share methods and
ideas is an unavoidable step to progress in their devel-
opment. I want to congratulate the Advanced Concepts
Team of the ESA and the Faculty of Mathematics and

*Corresponding author. E-mail: bartolome.coll@uv.es
¹A ‘scientific object’ means here an object whose knowledge is in-

teresting by itself, independently of its practical utility.
²A ‘technical object’ means here an object whose knowledge is in-

teresting for practical applications, to control our environment.

Physics of Ljubljana for this initiative. is paper is the
text of my talk in this meeting.³

I believe that most people are better interested on rel-
ativistic positioning systems as technical objects. But,
since their origin as scientific ones, relativistic position-
ing systems are paradigmatic objects able to transform rela-
tivity in a truly experimental branch of physics. Relativistic
positioning systems are the first component in the con-
struction of relativistic laboratories of finite size.

It seems evident that to be aware of this role may im-
pel us, whatever be our interest, technical or scientific,
to solve problems set out by relativistic positioning sys-
tems and in finding scientific applications of them.

e purpose of this lecture is twofold: to present my
perspective about some of the concepts related to rela-
tivistic positioning systems, and to prospect for the first
ingredients able to make relativity an experimental ap-
proach to physics.

2 Perspectives

Why relativistic positioning systems have taken so long
to appear? From my personal experience, the answer
is very clear: because the obstructions caused by some
prejudices. We shall begin with a brief account of those
physical prejudices that, for me, have affected and re-
tarded the natural development of relativistic position-
ing systems.

³Workshop Relativistic Positioning Systems and their Scientific Ap-
plications, Brdo (Slovenia), 19th to 21st September 2012.
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2.1 e genesis of relativistic positioning systems

e idea of relativistic positioning systems appeared
almost simultaneously and in all likelihood indepen-
dently, in Bahder [4], Coll [6] and Rovelli [14]. Every
one of these three authors arrived to this idea by very
deeply different ways. It is very interesting, and strongly
striking, that, in a so short period of time and without
apparent precedents, three very similar ideas appeared
from three so different ways.

So different ways limit myself to comment only about
my genesis of the concept.⁴ In this genesis, a little num-
ber of papers appears as landmarks or precursors for the
ideas presented in [6]:

* Light coordinates in Relativity (1985) [5],
* Symmetric frames on Lorentzian spaces (1991) [8],
* 199 causal classes of space-time frames (1992) [9],

ey have contributed to the weakening⁵ of at least one
of the following prejudices:

a: a physical framemust involve necessarily an a priori
definition of space-like synchronization,

b: no frame of four real null vectors exists in relativity,
c: coordinate systems have no physical meaning.
Prejudice a is a mixture of a feeling-based prejudice

and an error-based one. On one hand, it is related to
the old feeling, current many decades ago in metrol-
ogy, that a standard of distance must be matter-based
and not clock-based, and is a remainder of the feel-
ing that an extended instantaneous space is physically
meaningful. On the other hand, it comes from a confu-
sion between the notions of a physical system and of a
social or conventional one. It is clear that for our social
conventions around the Earth an a priori synchroniza-
tion is very convenient but not at all necessary.⁶ e
absence of a strict symmetry of the gravitational field
and of the Earth surface implies the non existence of an a
priori physical synchronization. At the, at present, un-
certainty, our conventional synchronization is only pos-
sible for our conventional International Atomic Time,

⁴During many years, the germ of relativistic positioning systems
covered a corner of my private garden of thoughts for week-ends and
holidays. But every flower sprouted in it, every idea, I showed it to
my friends Joan Ferrando, Juan Antonio Morales, Albert Tarantola
(†2009) and José María Pozo, who watered it carefully. is is the
meaning of ‘my genesis’.

⁵I would like to say ‘removal’, but recent discussions with col-
leagues show that it is not, unfortunately, the case.

⁶e local Solar time everywhere on the Earth is an example of a
non a priori synchronization.

not for the proper physical time of every event around
the Earth.⁷,⁸

Prejudice b is an error-based prejudice, due to the ‘sat-
uration’ of the concept of “null” tetrads, produced by
the abundance of works in the well-known Newman-
Penrose formalism [12]. e error consists in applying
unconsciously, to any set of four null vectors, the or-
thogonality condition imposed byNewman and Penrose
to their null tetrads. It is perhaps the weaker one of the
above three prejudices, and the easier to dilute, but it
has been almost ‘universal’ among relativistic physicists,
whatever their renown, up the the last decade.

Prejudice c is also an error-based one, due to an in-
correct statement of the principle of general covariance.
is principle states that the laws of physics are invariant
by the choice of coordinate systems, and it is an extension
of the principle of dimensional invariance, that states
the invariance of the laws with respect to the particular
units used to obtain them. But curiously, during dozens
and dozens of years, this statement has slid to the incor-
rect form the laws of physics are independent of the choice
of coordinate systems,⁹ generating the prejudice in ques-
tion, meanwhile the similar statement for the dimen-
sional invariance generated a deep research to improve
the definition and construction of physical units.¹⁰

On the basis of different combinations of the above
prejudices, the publication of papers [8] and [9] was
strongly retarded¹¹, paper [5] was forbidden¹² and the
research work on this subject, criticized by many col-
leagues, was underestimate.

For me, this simple sample of the effects of prejudices
already explains in part why relativistic positioning sys-
tems have taken so long to appear. But in general the
damages that prejudices of referees and colleagues pro-

⁷Like the Geoid, a physical synchronization on the Earth for a
physical time can only be the a posteriori result of continuous careful
measures.

⁸Relaxing the space-like condition on a synchronization, i.e. re-
ducing it to the locus of equal time events, a relativistic positioning
system does not defines one a priori synchronization, but four equiva-
lent ones.

⁹For an object ω, its ‘independence’ of a set C of objects c means
that its conception, definition, construction and use may be made in
absence of C, meanwhile its invariance of C means that for its con-
ception or its definition or its construction or its use, objects of C are
needed, but that their effect on ω are independent of the particular
objects c, c ′, etc. of C taken for its elaboration or use.

¹⁰e NIST (National Institute of Standards and Technology), for
example, is a good example.

¹¹Almost three years for [9].
¹²A hierarchical superior of my research department forbade the

submission for publication of an English version of the paper and the
continuation of the research on this subject.
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duce is stronger.¹³ To help young researches to avoid
them, let me remember that :

e main obstructions to innovative research
are the prejudices. e own prejudices for its
conception. ose of the peers for its diffu-
sion.

Prejudices do not belong to the past.¹⁴ e following
example concerns a fashionable one.

2.2 An example of an extended prejudice

In 2011, the OPERA experiment between the CERN
(Geneva) and the LNGS (Gran Sasso) mistakenly re-
ported neutrinos appearing to travel faster than light [1].

Some scientists expressed their doubts about this re-
sult, like Hawking,¹⁵ or their incredulity, like De Ru-
jula,¹⁶ but, as reported in many different media, almost
all of them, including the directors of the experiment,
believed that, if the result were true, relativity theory
would be refuted or, at least, deeply damaged. We can
thus state, as a general belief among scientists concerned
by the subject, that:

Neutrinos traveling faster than the velocity of
light c between CERN and LNGS are incon-
sistent with standard relativity theory.

Is this belief correct or is it a prejudice? Let us see the
answer in three steps.

Let us begin remembering what is a local theory. A
local theory is a theory whose general statements and
equations are local, i.e. valid in such small space-time¹⁷
regions that any physical quantity not mentioned in the
statement or not appearing in the equations has to be
supposed as constant. Mathematically a physical theory
is local if its formulation is infinitesimal (relates physical
fields and their space-time variations at every event).

Now, relativity theory,
- by the concepts used in its construction,
- by the principles on which it is founded,
¹³Prejudices expend time and money, and demoralize their victims.
¹⁴ere exists no panacea to get rid of them. To remove them is

an individual inner process for which, if the intention is necessary, it
is also frequently insufficient. Fortunately, the prejudices cited in the
text belong to the class of those that disappear when one is very careful
with the analysis of the conditions under which their assertion is true.

¹⁵“It is premature to comment on this. Further experiments and
clarifications are needed” said him in [10].

¹⁶“Flabbergasting”, said him in [13].
¹⁷I think that we, physicists, have not yet sufficiently ‘symbiosed’ the

concepts of space and time in practice, so that we have not yet merit
the moral right to write ‘space-time’ without its hyphen of compound
word’.

- by the domain of influence of its equations,
- by the tensor character with which it represents the

physical quantities
- by the concept itself of space-time that it proposes,

- and because it gives no phenomenological theory
for the construction of its current (energy tensor),
but supposes it can be obtained by means of classi-
cal balances,

is a local theory in all its constituents.
Consequently, as all others general statements of the

theory, the one that says that the velocity of light c =
299792458 m/s is a physical limit, or any other equiv-
alent version, is a local statement. And, being local, the
velocity cannot but be an instantaneous velocity, i.e. mea-
sured in a so small time interval that any physical quan-
tity not implied by the concept of velocity is constant. It
cannot be, in general, a mean velocity. e crucial point
is that:

* In Newtonian theory, where time and space are ab-
solute, if the instantaneous velocity of a particle re-
mains constantly lesser than a value v during a finite
interval, the mean velocity in this interval will also
be lesser than v.

* But in relativity, where time and space are different
at different events, a particle whose instantaneous
velocity remains constantly lesser than a value v,
whatever it be, during a finite interval, may have a
mean velocity lesser, equal or greater than v.

is last fact is easy to see in very simple cases, as it is
the one of Fig 1, representing an accelerated observer
submitted to an acceleration g who, at a proper instant
τ1, sends a light signal to a mirror situated at a proper
distance d, and receives it at a proper instant τ2. Be-
cause accelerated clocks slow down with respect to iner-
tial ones, and that the distance d to the mirror is greater
than that of the inertial observer that cross at τ1 and τ2,
the mean velocity, vm ≡ d/∆τ, of the light with respect
to the accelerated observer cannot but be greater than c.
e precise amount is given by:

vm = c

gd
c2

ln(gd
c2 + 1)

≈ c

1 − 1
2
gd
c2

.

Note that this is a two-way measure that involves only
one clock, one space and, in it, one distance. A one-way
measure involves in general, not only two clocks, two
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F . An observer A with acceleration g sends at τ1 a signal
to a mirror B situated at a distance d, and receives it at τ2. For
him, the mean velocity of light is greater than c.

spaces and two distances,¹⁸ but above all, it involves their
precise correspondence between them.¹⁹

In theOPERA experiment, themean velocity of neu-
trinos, traveling a region of a non constant gravitational
field, is measured between two events, the CERN and
the LNGS, of different gravitational acceleration (dif-
ferent clock rates). is situation has been modeled in
a relativistic gravitational space-time by Allès [2] and
Lüst and Petropoulos [11], and in both cases they have
found mean velocities greater than c for the OPERA
configuration, although of many orders of magnitude
lesser than the experimental obtained value.

e error of the Opera experiment has not been, as
generally believed, to obtain a velocity greater than c for
neutrinos, because relativity foresee it, but the simple
quantitative one of obtaining an inappropriate numeri-
cal value.

Let me emphasize this point:

In relativity, mean velocities of particles may be
lesser, equal or greater than the instantaneous ve-
locity of light.

¹⁸Take into account that, in relativity, between two observersA and
B, the spatial distance from A to B is the same than that from B to
A only if they are locally near, otherwise they are generically different.

¹⁹In the case of the one-way OPERA experiment, the symmetries
(staticity and spherical symmetry) allow to reduce this correspondence
to a synchronization between the two clocks.

2.3 Relativistic and classical positioning systems

Many people consider relativistic positioning systems
as Newtonian or classical positioning systems directly
worked out with relativity. is is not correct. Although
intimately related, they are very different objects. Let us
see it.

e aim of a relativistic positioning system is:

- to allow any user²⁰ to know its location in a well
defined four-dimensional physical coordinate sys-
tem,

- to provide the user with its proper time and proper
distance (space-time metric),

- to characterize its space-time trajectory dynam-
ically (proper acceleration) and gravitationally
(gravimetry).

A relativistic positioning system around the Earth, or
RGNSS (Relativistic Global Navigation Satellite Sys-
tem), wants thus to characterize the physics of the space-
time region between the constellation of satellites and
the Earth surface. Fig 2 represents the gravitational field
of this extension in a intuitive form.

F . e aim of a RGNSS is to locate users and to provide
them with their proper time and proper units of distance so as to
characterize physically the region between the Earth and the satel-
lite constellation.

On the other hand, the aim of a classical positioning
system is:

- to allow any user to know its position with respect
to a specific chart of the Earth surface, and its time
with respect to a time scale based on the Interna-
tional Atomic Time (TAI).

²⁰eword user here denotes any person or device able to receive the
pertinent emitted data from the relativistic positioning system and to
extract from them the corresponding information. For short, we shall
refer to this user as it.
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In the positioning systems around the Earth, or GNSS
(Global Navigation Satellite Systems), the specific
charts of the Earth surface in use are the World Geode-
tic System (WGS84) or the International Terrestrial
Reference Frame (ITRF), differing by less than ten cen-
timeters in their last determinations. e TAI scale,
partially physical, social and political, is a weighted av-
erage from many national laboratory clocks, and repre-
sents a sort of mean proper time on a mean sea surface
level. Moreover, its extension all over the space-time
region between the Earth surface and the satellite con-
stellation has undoubtedly many practical and social ad-
vantages.

But this extension at any altitude of the TAI scale
and of the Earth surface chart is tantamount to a New-
tonization of the space-time region between the Earth
surface and the satellite constellation. Fig 3 represents
intuitively this situation.

F . e extension of the Earth surface chart and of the TAI
to all the space up to the satellite constellation, constitute a New-
tonization of this region.

Note that other Newtonizations are possible, as for
example the one obtained by the extension to all the
region of an averaged time at the satellite constellation
level.

Although for a good smooth running of both systems,
RGNSS and GNSS, the same information is needed,
this information is obtained, interpreted and used very
differently. us, the physical timing of proper clocks
of the satellites constitutes the basic data for relativistic
positioning systems, meanwhile this timing is used in
classical positioning systems to construct the TAI tim-
ing at the satellite level, a pure conventional timing at
this level. In this sense, the relativistic corrections for
the GPS (for example, in Ashby [3]) are used “subtrac-
tively” on the physical clocks in motion not to improve
their precision but, on the contrary, to better simulate
their Newtonian (absolute) behavior.

is situation may be described in short by saying
that relativistic positioning systems are physical systems
meanwhile classical positioning systems are conventional
ones. To improve both of them, I believe better to first
improve the physical systems without regard to the con-
ventional ones, and then to use these results to improve
the conventional systems. Anyway, we must be consci-
entious with what we are doing: using relativity to bet-
ter ‘Newtonize’ a GNSS or using relativity to construct
a positioning system.

2.4 e main relativistic positioning systems

Let us remember some known concepts about location
systems. A location system is a physical realization of a
coordinate system (for an epistemic definition without
reference to mathematics see, for example [7]).

Two important classes of location systems are the ref-
erence systems and the positioning systems. e goal of ref-
erence systems is to situate the events of a domain with
respect to a given observer (generally located at the ori-
gin), meanwhile the goal of positioning systems is to
indicate its own position to every event of the domain.
In Newtonian theory, as far as the velocity of light is
supposed infinite, both goals are exchangeable in a sole
location system. But in relativity this is no longer pos-
sible and it is impossible to construct a positioning sys-
tem starting from a reference system, but one can always
(and very easily) construct a reference system starting
from a positioning system.

Relativistic positioning systems

Positioning systems are immediate, what means that ev-
ery event of their domain may know its proper coordi-
nates without delay (in fact, it is this property that de-
fines them). Here they are also supposed generic and
(gravity) free, guaranteeing their existence in any generic
space-time and their construction without the previous
knowledge of the gravitational field respectively. It fol-
lows from these and the above properties that, whenever
possible, it is a positioning system, and not a reference
system, that has the most interest to be constructed.
From now on, we consider only relativistic positioning
systems. Denote by P the set of all of them.

Auto-locating positioning systems

An important subclass of positioning systems are the
auto-locating positioning systems, that broadcast their
proper time but also the proper time that they receive
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from their neighboring satellites. Let τIJ, I ̸= J, be
the proper time of the satellite clock J received by the
satellite I at its proper time instant τI. en, the set of
sixteen data {τI, τIJ} received by an observer contains,
of course, the emission coordinates τI, (I = 1, · · · , 4)
of this observer but also the coordinates {τI, τIJ} of ev-
ery satellite I in the emission coordinate system {τI}.²¹
Denoting by L the set of all auto-locating positioning
systems, we have L ⊂ P.

Autonomous positioning systems

Auto-locating systems allow any user to draw univocally
the world-lines of the satellites in the emission coordi-
nate system that they broadcast. But the user still does
not know how to draw these world-lines in the space
time in which it is living.

For a user to be able to do this, the coordinate data
{τI, τIJ} broadcast by the auto-locating system has to be
completed with:

* dynamical data of the satellites (acceleration, gra-
diometry),

* observational data from them (e.g. position of ref-
erence quasars or pulsars) and

* gravitational knowledge of the coordinate region
(theoretical, experimental or mixed).

e set of this information is called the autonomous data.
Auto-locating systems broadcasting autonomous data
are called autonomous positioning systems. Denoting by
A the set of all of them, we have A ⊂ L ⊂ P.

Generic positioning systems, those in the difference
P \L, have the interest of having shown that relativistic
positioning systems generic, free and immediate exist.
But, above all, they have the advantage of being easier to
study than the auto-locating systems ofL. Nevertheless
we have seen on one hand that, whenever possible, there
are them, and not reference systems, that have the most
interest to be constructed and, on the other hand, we
have seen that because the absence of autonomous data
they need to be referred to a reference system. at is to
say: generic positioning systems are incoherently incomplete
or insufficient. Generic auto-locating systems, those inL

\A, also inherit the above incoherent incompleteness.

²¹e world-lines of the satellites do not belong to the emission
coordinate domain of the positioning system, but to its border. Nev-
ertheless, although they are not differentiable along the world-lines,
the emission coordinates are well defined on them.

us, non-autonomous positioning systems, those in
P \A, appear as intermediate hybrids between relativis-
tic reference systems and autonomous positioning sys-
tems.

Autonomous positioning systems are the best loca-
tion systems. ey are the challenge. ey were pro-
posed, for the first time, in [6].

3 Prospects

I do not approve the way relativity has been developed
during its century of existence.

Relativity is a physical theory of the gravitational
field, but it is also a physical theory of the space-time.
And it is well established that the relativistic descrip-
tions of both objects, gravitational field and space-time,
improve their corresponding homologues in Newtonian
theory. For this reason, I think that:

* as a dynamic physical theory, relativity must pro-
vide more experiments than simple experimental
verifications from time to time, as it is the practice
today,

* as an improved theory of the space-time, any phys-
ical experiment, whatever it be, ought to be quali-
tatively described in the framework of relativity, re-
gardless of its quantitative evaluation, for which in
many cases Newtonian calculations could suffice,

* as an improved theory of the gravitational field, rel-
ativity ought to propose experiences andmethods of
measurement of general gravitational fields (four-
dimensional metric), which, up to now, are con-
spicuous by their absence.

In short, relativity needs to develop a proper experimen-
tal approach to the physical world. And I believe that we
already have the conceptual basic ingredients for this de-
velopment.

Now, for this purpose, we need to make more precise
the idea of a relativistic experimental approach.

3.1 Epistemic relativity

In relativity, a good deal of scientific works analyze
physical and geometrical properties of the space-time,
but

• don’t integrate the physicist as a part of it,

and
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• forget implicitly that:

- information is energy,
- neither the density of energy, nor its velocity

of propagation can be infinite in relativity.

Many of these properties of the space-time may be an-
alyzed by a geometer on his desk, but to be known by an
experimental physicist would require the qualities of an
omniscient god !

For these reasons, we characterize these scientific
works as belonging to ontic relativity.²²

Of course, ontic relativity is absolutely necessary for
physics. e conceptual evaluation of many physical sit-
uations in order to be able to conceive physical experi-
ments belongs to ontic relativity. But ontic relativity is
also manifestly insufficient for a relativistic experimental
approach to physics.

At the opposite side, the works in relativity that:

• integrate the physicist as an element of the problem
considered,

• concern physical quantities that the physicist can
know or measure and

• take into account explicitly what information,
when and where, the physicist is able to know,

will be considered as characterizing epistemic relativity.²³
e main objective of epistemic relativity is to provide

the physicist with the knowledge and protocols neces-
sary to make relativistic gravimetry in its (a priori un-
known) space-time environment.

is is the first and unavoidable step to develop ex-
perimental relativity as the natural scientific approach
to our physical world.

3.2 Relativistic stereometry

We know that in the space-time, the adequacy between
a mathematical model and the physical system that it
describes needs of a univocal correspondence between
them. us, because, in the differentiable manifold of
the mathematical model, points are identified by their
coordinates, we need to know how to construct a location
system, that is to say, how to label the events of the phys-
ical space-time. But we know also that the best location

²²From Greek ‘ontos’, ‘being’, with the meaning of ‘what it is’ as
opposed to ‘how it is seen’.

²³From Greek ‘episteme’, ‘knowledge’, with the meaning of ‘how we
obtain it’.

systems (those which are generic, free and immediate)
are the relativistic positioning systems. Consequently,
it becomes evident that relativistic positioning systems
are the first ingredient of epistemic relativity.

What other else do we generically need in epistemic
relativity?

A finite laboratory

In fact, what we need is to be able to consider the space-
time region of physical interest as a laboratory. e
question is then: what is a laboratory (of finite dimen-
sion) in relativity?

A simple reflexion shows that, in fact, and regardless
of the specificity of its measurement devices, any labo-
ratory, has to provide us with:

* a precise location of the significant parts of the
physical system in question, and

* a precise description of its pertinent intrinsic phys-
ical properties.

Similarly to the precise location, which is obtained by
means of a system of four clocks (relativistic positioning
system), the precise description of the intrinsic proper-
ties of a system has to be obtained by means of a system
of four observers. Such a system of four observers is
called a stereometric system. us,

A finite laboratory in relativity is a space-time
region endowed with

* a relativistic positioning system and
* a relativistic stereometric system.

Relativistic stereometric systems

In physics, the word ‘observer’ is rather polysemic. To
what notion of observer are attached the relativistic
stereometric systems?

Here an observer is a 4π-wide hypergon eye²⁴ able to
record and to analyze its input. It is a local device,²⁵ de-
fined at every space-time event by its unit velocity, that
projects the past light cone of the event onto its celestial
sphere.²⁶

²⁴Also called 4π-steradian fish eye.
²⁵Physically a device is local if it takes up such a small space-time

region that all physical fields in it may be considered as constants.
Mathematically it means that the device needs only of an infinitesimal
region around a space-time event to be defined.

²⁶e celestial sphere of an observer at a space-time event is the
quotient of its three-dimensional space by the set of all the past null
directions converging at this event.
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Although they are not very abundant, there exist in-
teresting papers on relativistic vision but they differ
very much in strategy, starting hypothesis and defini-
tion (frequently implicit) of ‘eye’. And, unfortunately,
almost none of them emphasize the invariants (intrin-
sic properties) of the configuration that they analyse, a
crucial fact for us.²⁷

F . ree-dimensional representation of a 4π-wide hyper-
gon eye as a local device that projects the past-like cone of the event
on its celestial sphere.

A very interesting feature here is that relativistic stere-
ometric systems are the causal duals of positioning systems.

F . ree-dimensional representation of a relativistic po-
sitioning system.

ey are causal duals operationally: relativistic posi-
tioning systems are passive for the user meanwhile rel-
ativistic stereometric systems are active.²⁸ But they are

²⁷It would be stimulating to analyze and classify all this material,
and to select those result attached to hypergon eyes.

²⁸A relativistic stereometric system is also a location system for ac-

also causal duals conceptually, as space-time objects, be-
cause they differ simply by a timelike inversion (see Figs
5 and 6). It is then clear that many of the properties
of one of these systems may be transformed, by simple
change of time orientation, in properties of the other
system.

F. ree-dimensional representation of a relativistic stere-
ometric system.

e aim of relativistic stereometry is to obtain the in-
trinsic properties of physical systems starting from their
relative properties seen by four observers.

In relativity, because the space-time objects are histo-
ries,²⁹ the intrinsic properties of a system related to its
form must involve, besides the field of proper distances
between its neighboring points, the field of proper times
of its local elements. A main set of intrinsic properties
are the visual ones, obtained by adding to the intrin-
sic geometric properties, the color field of the local ele-
ments.

us a first basic problem of relativistic stereometry is
to obtain, for every local element of a physical system, its
proper color and the proper distances to its neighboring
elements starting from the corresponding relative ele-
ments observed by the four observers of the relativistic
stereometric system.

tive users, i.e. for those users endowed with an instant-identifier, as
for example a clock broadcasting its time. e times of reception, by
the four observers of the stereometric system, of the signal of an in-
stant of the user, constitute the reception coordinates of the user at that
instant. Such a reception system, in addition to be active, is also not
immediate: it is not a relativistic positioning system.

²⁹Namely, they are the histories of the spatial objects of Newtonian
theory.
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First theorems in relativistic stereometry

e intrinsic properties of a system are those which are
observer-invariant. In relativistic stereometry we have
thus to solve, starting from four observer-dependent
perspectives, an inverse problem.

In order to show how it works, we shall consider the
simplest physical system in the simplest stereometric
operational frame: a colored point particle in a two-
dimensional Minkowski space-time. In spite of its easy
framework, we shall see that the solution to this stere-
ometric inverse problem is interesting enough and con-
stitutes a good example of epistemic relativity.

F . A two-dimensional relativistic stereometric system ob-
taining the proper frequency of a particle.

us, in Minkowski two-dimensional space-time, let
C be the world-line of a coloredmaterial point of a phys-
ical system, of proper frequency f. Let f1 and f2 be
the Doppler frequencies received respectively by the ob-
servers C1 and C2 of the relativistic stereometric system
from an instant of C³⁰ and let v12 be the relative veloc-
ity of these observers at the instants of reception of the
signals f1 and f2. en we have:

eorem 1.- In terms of the received frequencies f1 and
f2 and of the relative velocity v12 of the system at the recep-
tion instants, the proper frequency f of the colored pointC is
given by:

f2 = f1f2

√
1 + v12

1 − v12

Note that, if the colored pointC is transported by one
of the observers (f = fi for some i = 1, 2), the above

³⁰ere is no matter here what instant-identifier is used: a clock
associated to the point, measuring any non necessarily proper time, a
flash reflected or carried by the point or any other pertinent device.

expression reduces to the standard one for the Doppler
shift.

In addition to the proper frequency, the Doppler fre-
quencies f1 and f2 also allow to work out the relative
velocities of the material point:

eorem 2.- e relative velocities v1 and v2 of the ma-
terial pointCwith respect to the observersC1 andC2 of the
relativistic stereometric system at the instants of reception of
the signals f1 and f2 are given by:

v1 =
f2
√

1 + v12 − f1
√

1 − v12

f2
√

1 + v12 + f1
√

1 − v12

v2 =
f1
√

1 + v12 − f2
√

1 − v12

f1
√

1 + v12 + f2
√

1 − v12

Note that the results in both theorems depend not
only of the measured Doppler frequencies, but also of
the relative velocity v12 of the observes of the stereomet-
ric system at their instants of reception of these frequen-
cies, a quantity that seems not obvious how to be mea-
sured. e question is thus: are these theorems epis-
temic ?

In fact, they are not epistemic. Moreover: by them-
selves they cannot be epistemic. e simple reason is
that, without additional specifications, these two the-
orems do not fulfill any of the above three conditions
characterizing epistemic relativity.

To fulfill these conditions, we must complete the
above results with the information about:

• what physicist we have choose to make the experi-
ment,

• when and where it³¹ is able to be informed of the
quantities needed to answer the problem,

• how can it know or measure these quantities.

is information is chosen here as follows:

* the simplest choice of physicist is to take it as one of
the observers of the relativistic stereometric system,
say C2, as shown in Fig 8,

* then it will be able to be informed of all the quan-
tities needed to answer our problem at the instant
τ12 of reception of the pertinent information com-
ing from the observer C1,

³¹e world physicist here denotes any person or device able to re-
ceive the pertinent information from the relativistic stereometric sys-
tem, to record and to analyze it and to perform the computations
needed for the problem in question. For short, we shall refer to this
physicist as it.
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* at that instant τ12 this physicist is informed of the
quantity f1, it already knows the quantity f2, mea-
sured and recorded by it at τ2, and it may know the
quantity v12 by computation.

F . Here, C2 has been chosen as the physicist of the epis-
temic problem and, from the instant τ12 on, it may know all the
quantities of the problem in question.

e computation of the relative velocity v12 may be
made, for example, from the knowledge of the world-
lines of the observers of the relativistic stereometric sys-
tem. In the case where these observers are geodesic, its
expression is very simple. If, for short, we call an epis-
temic theorem an epistem, from the above two theorems
we have:

Epistem 0.- In terms of the frequency of the proper time
of the observer C1 with respect to the proper time of the ob-
server C2, φ12, the relative velocity v12 between the ob-
servers of a geodesic relativistic stereometric system is given
by:

v12 =
1 −φ2

12

1 +φ2
12

.

Now, for this geodesic case, the above two theorems
become respectively:

Epistem 1.- In terms of the received frequencies f1 and
f2 of a colored point C and of the frequency of proper times
φ12 of a geodesic stereometric system, the proper frequency f
of the colored point C is given by:

f2 =
f1f2

φ12
.

Epistem 2.- e relative velocities v1 and v2 of the ma-
terial point C with respect to the observers C1 and C2 of a
geodesic stereometric system at the instants of reception of the

signals f1 and f2 are given by:

v1 =
f2 − f1φ12

f2 + f1φ12
,

v2 =
f1 − f2φ12

f1 + f2φ12
.

In spite of the very simple context in which they are
obtained, these results are interesting because they show
the essentials of epistemic relativity. Of course, because
the celestial sphere of an observer in a bidimensional
space-time reduces to two opposite points, the problem
of determining the proper distances to its neighboring
elements of a material point cannot be considered in this
dimension. e need of extending this work to three or
four dimensions is evident.

3.3 What about the mathematics of relativity?

e development of Riemannian geometry at the be-
ginning of the 20th century, the already existing classi-
cal theory of deformations and (the belief in) the local
character of the fundamental physical laws are at the ba-
sis of the mathematical frame of the general theory of
relativity, namely the Lorentzian differential geometry.

Insufficiency of differential
geometry in relativity

But, in its present form, in front of these historical
and conceptual justifications, there exist practical (epis-
temic!) insufficiencies of differential geometry in rel-
ativity. Initially, differential geometry appears appro-
priate for the description of locally deformed or curved
regions. But classical fields are of infinite range, so that
little local perturbations of a physical system do not re-
main confined, but spread indefinitely. is propaga-
tion of local little perturbations cannot be neglected, not
only because of it physically meaningful character, but
because it do not take place subtly, but at the velocity of
light, an antroposcopic³² velocity.³³

ese general facts do not diminish the unavoidable
character of differential geometry, its inevitability in the
formulation of relativity theory, but show its insuffi-
ciency. More particularly, in the study of positioning or

³²Visible to the naked eye and important enough for human activ-
ities.

³³ink, simply, in the important antroposcopic effect of striking a
match in the darkness.
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stereometric systems, or simply in the study of any epis-
temic problem of finite extension, this insufficiency is
dramatic. We are all suffering of this situation.³⁴

Finite-differential geometry

I think that it is an urgent task in relativity, for all of us,
to try to construct a finite-differential geometry.

e purpose of finite-differential geometry is to in-
troduce interchangeable finite versions of the basic in-
gredients of differential geometry, namely:

* metric g,
* connection Γ ,
* curvature Riem.
e distance function D(x,y), or its half-square

Ω(x,y), the Ruse-Synge’s world-function,

Ω(x,y) =
1
2
D2(x,y) ,

are already finite versions of themetric g. As it is known:

Ω(x,y) =
1
2

∫ 1

0
g

(
dγ

dλ
,
dγ

dλ

)
dλ ,

γ(λ) being the geodesic joining x and y, and their fun-
damental equations are:

gαβ∂αΩ∂βΩ = 2Ω , gab∂aΩ∂bΩ = 2Ω ,

where Greek and Latin indices are related to the first
and second arguments of Ω(x,y) respectively.

Distance spaces are well known, but their link with
differential geometry has not been yet sufficiently ex-
plored.

Let us think, in a given space-time, on a position-
ing system complemented with a number of additional
clocks. is over-determined system will generate an
over-determined set of data able to select a distance
function with some uncertainty. Well, in spite of its in-
terest, this problem is open for space-time distances.

But not all distant functions come from metric ten-
sors. us the first problem to be solved for any pro-
posed³⁵ distance function is if it is really the (geodesic)

³⁴Besides this insufficiency, one could add the absolute lack of co-
variant methods of perturbations and approximations. After beautiful
discourses about the importance of the role of the geometrization of
physics by relativity, the most simple approximate calculation or de-
formation of a metric is made, without embarrassment, with non co-
variant analytical methods devoid of geometrical meanings. It is clear
that the usual mathematical methods in relativity are not well adapted
to relativity. But this subject will not be considered here.

³⁵Or experimentally obtained with some uncertainty.

distance function of a metric. e constraints for this to
be the case will constitute an important tool to improve
uncertainties and to delimit parameter values.

I solved this problem some years ago. In order to ex-
press its solution, it is convenient to introduce some al-
gebraic functions of the first and second partial deriva-
tives of the symmetric bifunctionD(x,y)≡ D proposed
as distance function. Remember that at this level we
have no metric at all, and that all subscripts in D de-
note partial derivatives. Define Vα

abc as the following
function of second order derivatives of D:

Vα
ℓmn ≡ εαλµνDℓλDmµDnν ,

Vaα as the following combination of first and second
ones:

Vaα ≡ εaℓmnεαλµνDℓDλDmµDnν .

and Vα as the quantity:

Vα ≡ Vα
ℓmnx

ℓymzn ,

where xℓ, ym, yn are arbitrary independent directions.
Introduce the two scalars

Φ ≡ DλV
λ ,Ψ ≡ εrℓmnV

ρ
ℓmnDrDρ ,

and form the two quantities:

Dα ≡ Vα

Φ
, Daα ≡ 3

Vaα

Ψ
.

en, we have:
eorem 3.- (Structure theorem for distance func-

tions) e necessary and sufficient condition for a distance
function D(x,y) to be the geodesic distance function of a
metric, is that its derivatives verify the identity:

DabcρD
ρ +D(ab|ρ|Dc)mσD

mρDσ

−D(ab|ρ|Dc)DmnσD
mρDnDσ = 0 ,

where the subscripts denote partial derivatives andDa and
Daα are the quantities just defined.³⁶

Note that, in all the above expressions Latin and
Greek indices can be exchanged because the symmet-
ric character of the distant function proposed. Another
point to be noted, very little known, is that a function
may be independent of some parameters meanwhile its
algebraic expression depends unavoidably of them, if

³⁶Parentheses denote sum of the concerned terms for the circular
permutations of the indices a, b, c.
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these parameters are not scalars. It is here the case of
Dα whose expression, from the definition of Vα, de-
pends of the arbitrary vectors xℓ, ym, zn but that, as
a function, it does not dependent of them: the partial
derivatives of Dα with respect to any of these vectors
vanish.

Once we know that a proposed distance function is
truly³⁷ a geodesic distant function of some metric, the
second problem to be solved is to obtain that metric.
If, for example, as it may correspond to a natural experi-
mental protocol, the proposed distance functionD(x,y)
has been obtained from two local groups of points sepa-
rated by non local distances, very probably the standard
method of obtaining themetric by taking the limit when
a point of one local group, say y, reaches a point of the
other, say x, may have no sense, neither physical nor
mathematical. For this reason, one needs to obtain the
metric bymeans of a finitemethod. I did that some years
ago, and the result is:

eorem 4.- (Metric of a distance function) In terms
of the derivatives of the distance functionD of a metric, the
contravariant components gαβ of that metric at the point x
are given by:

gαβ = DαDβ +DaαDbβDabγD
γ .

Note that the right hand side of this equation is a
combination of a symmetric bifunction D(x,y) and its
partial derivatives, which, in general is other bifunction,
meanwhile the left hand side is a function of the sole
variable x. ere is no contradiction: there are the con-
ditions of theorem 3 that guarantee the downfall of the
variable y in the right hand side.

is expression is very well adapted for the computa-
tion of the metric from an approximate distance func-
tion by means of finite difference methods.

e finite analogue of a connection remains a com-
pletely open problem. Perhaps this problem is avoid-
able, but it is not avoidable the quest for a finite version
of curvature, because curvature is directly related to the
energetic content of physical fields. With my friend Al-
bert Tarantola (1949-2009), in the lustrum 2001-2005,
we associated, to every four elements of a space-time, a
finite object that seems to be a finite definition of curva-
ture but, unfortunately, we were not able to prove that
it is so.

e above results remain, for our needs, elemental.
We must still develop them, plan a phenomenology of

³⁷At the admissible uncertainties.

distance functions, and learn to ask them the analog fi-
nite questions that we are asking to a differential geo-
metric structure.
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Abstract. is contribution concerns relativistic
positioning systems in Minkowski space-time. At-
tention is focused on the space-time location prob-
lem and the underlying bifurcation problem (where,
for a given set of standard data, two locations are
possible). e bifurcation problem for a user in in-
ertial coordinates is solved extending the standard
set of emission data with an observational rule. e
covariant quantities (scalar, vectors and bivector)
that give the solution to the location problem are
expressed in terms of their time-like and space-like
components with respect to the inertial reference
observer.

1 Introduction

In Global Navigation Satellite Systems (GNSS), the lo-
cation problem consists in allowing the users to deter-
mine its position in a specific terrestrial frame from the
data they receive from four or more satellites of the sys-
tem.

Formally, the location problem reduces to solving an
algebraic system of non-linear equations (cf. Eq. (18)
below). Each equation expresses that c times the time-
of-flight of the electromagnetic signal is the range from
the user to the satellite that broadcasts the signal, with

*Corresponding author. E-mail: bartolome.coll@uv.es
†joan.ferrando@uv.es
‡antonio.morales@uv.es

c being the speed of light. From now on we take units
so that c is equal to one.

One can solve the equations by an iterative procedure
(starting from an approximate user position) or using
some well adapted numerical algorithms, for instance
those by Bancroft [2] and Krause [8], that are still in
use in GPS. e non-uniqueness of the GPS solution,
was pointed out by Schmidt [12] and studied by Abel
and Chaffee [1, 3] and by Grafarend and Shan [7] who
called it the bifurcation problem.

In current practical situations in present-day GNSS,
the bifurcation problem may be solved by hand. If a user
stays near the Earth’s surface the right solution is the
nearest to the Earth radius. However, if the user is near
a satellite, or in extended GNSS (satellites broadcast-
ing in all directions), or in general relativistic position-
ing systems, the bifurcation problem cannot be so eas-
ily avoided. Bifurcation situations will be present when
a GPS satellite is located with respect to four Galileo
emitters (see [10] and the contribution by D. Sáez and
N. Puchades in this workshop [11]).

In order to monitor and to better understand the ge-
ometry of the configuration of the emitters and the real
solution of the location problem in relativistic position-
ing, it is desirable to solve it analytically. erefore we
are looking for a general, exact, closed and covariant for-
mula giving the solution.

Here, we are going to consider such formula for rel-
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ativistic positioning systems in the Minkowski space-
time, focusing the attention on:

(i) the location problem: to determine the inertial co-
ordinates of a user from a given set of positioning
data,

(ii) the bifurcation problem: to choose the true solution
of the location problem where it admits two formal
solutions,

(iii) the space and time splitting with respect to inertial
coordinates of the quantities providing the user lo-
cation.

Notation.- e main sign conventions and notation
adopted in this paper are:

(i) g is the Minkowski space-time metric, with sig-
nature (−,+,+,+).

(ii) η is the metric volume element of g, defined by
ηαβγδ = −

√
−detgϵαβγδ, where ϵαβγδ stands for

the Levi-Civita permutation symbol, ϵ0123 = 1. e
Hodge dual operator associated to η is denoted by an
asterisk ∗. For instance, in index notation, if x,y, z are
space-time vectors, one has

[∗(x∧ y∧ z)]α = ηαβγδx
βyγzδ. (1)

where ∧ stands for the wedge or exterior product (an-
tisymmetrized tensorial product of antisymmetric ten-
sors).

(iii) i() denotes the interior or contracted product,
that is, if x is a vector and T a covariant 2-tensor, one
has [i(x)T ]ν = xµTµν.

(iv) For a given inertial observer of unit velocity u,
u2 ≡ g(u,u) = −1, any vector x splits as:

x = x0u+ x⃗ (2)

where x0 = −x · u ≡ −g(x,u) and x⃗ ∈ E⊥ are the
time-like and space-like components of x relative to u,
respectively, E⊥ denoting the three-space orthogonal to
u.

(v) For vectors x⃗, y⃗ ∈ E⊥, the vector or cross product
is expressed as

x⃗× y⃗ = ∗(u∧ x⃗∧ y⃗), (3)

and, if z⃗ ∈ E⊥, the scalar triple product

(⃗x× y⃗) · z⃗ ≡ (⃗x, y⃗, z⃗) (4)

is then given by

(⃗x, y⃗, z⃗)u = ∗(⃗x∧ y⃗∧ z⃗). (5)

2 e location problem

Basically, a relativistic positioning system (RPS) is a set of
four clocks A (A = 1, 2, 3, 4), of world-lines γA(τ

A),
broadcasting their respective proper times τA by means
of electromagnetic signals. e set R of events reached
by the broadcast signals is called the emission region of
the RPS.e four proper times {τA} received at an event
P of R are its emission coordinates.

A. Standard emission data set E.- Let {xα} be any
given specific coordinate system covering R. Formally,
the location problem consists in finding the user posi-
tion in the coordinate system {xα} as a function of its
emission coordinates {τA} and a set of suitable data.

e set of the emitter world-lines referred to the co-
ordinates {xα}, and the values of the emission coordi-
nates received by a user, E ≡ {γA(τ

A), {τA}}, is called
the standard emission data set. is set E is suitable data
for the location problem only in a part of the emission
region R, called the central region (see below). Out of
this region, an extended set of data including observa-
tional information is required.

In Minkowski space-time, the location problem is
solved by finding the coordinate transformation, xα =
κα(τA), from emission {τA} to inertial {xα} coordi-
nates. e resultmay be expressed bymeans of a general,
exact, closed and covariant formula (see [4, 5] and Eq.
(10) below).

B. Quantities associated to the configuration of the
emitters.- e configuration of the emitters for an event
P is the set of the four events {γA(τ

A)} of the emit-
ters at the emission times {τA} received at P. Let us
denote by x ≡ OP the position vector with respect
to the origin O of the coordinate system {xα}. Con-
sider a user at P that receives the broadcast times {τA},
and denote by γA the position vectors of the emitters
at the emission times, γA ≡ OγA(τ

A). Let us choose
the fourth emitter as the reference emitter and name the
other emitters the referred emitters, whose relative posi-
tion vectors with respect to the reference emitter are re-
spectively ea = γa − γ4 (a = 1, 2, 3). e trajectories
followed by the light signals from the emitters γA(τ

A)
to the reception event P are represented by the vectors
mA ≡ x−γA that are null, m2

A = 0, and future point-
ing, that is, u · mA < 0 for any observer u (see Fig.
1).

e configuration of the emitters has associated the
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F . Configuration of emitters. Taking γ4 as the reference
emitter, the position vector of the event P is m4 and the relative
positions ea of the referred emitters γa are ea = γa − γ4 =
m4 −ma (a = 1, 2, 3). ey determine the configuration scalars
Ωa, vector χ, and bivectorH defined in the text.

following quantities: the configuration scalars,

Ωa =
1
2
e 2
a (a = 1, 2, 3) (6)

which are the world function of the pairs of emitters
{γa,γ4}, the configuration vector,

χ ≡ ∗(e1 ∧ e2 ∧ e3) (7)

is orthogonal to the hyperplane containing the four
events, and the configuration bivector,

H ≡ ∗(Ω1 e2 ∧ e3 +Ω2 e3 ∧ e1 +Ω3 e1 ∧ e2). (8)

All these quantities are computable from the only
standard data set E because they are defined from ea.

Here, we suppose that the emitter configuration is
regular for the reception event P, that is, that the four
emission events {γA(τ

A)} determine a hyperplane, the
configuration hyperplane for P. us, we assume that
χ ̸= 0. Non-regular emitter configurations, with χ = 0,
can occur in current GNSS as it was considered in [1, 3].

C.Covariant expression of the solution.- A RPS de-
fines a function, Θ(P) = {τA}, that maps each event P
in R to its emission coordinates {τA}. Θ is called the
characteristic emission function of the RPS and the emis-
sion coordinate region of the RPS on whichΘ is invertible

is denoted by C. e orientation of a RPS at the event P
is the orientation of the emission coordinates at P,

ϵ̂ ≡ sgn[∗(dτ1 ∧ dτ2 ∧ dτ3 ∧ dτ4)] (9)

and it coincides with the sign of the Jacobian determi-
nant of Θ, ϵ̂(P) = sgn JΘ(P).

In the case of flat space-time, the explicit form of the
coordinate transformation xα(τA) is given by (see [4,
5]):

x = γ4 + y∗ − λχ, (10)

where
λ =

y2
∗

(y∗ · χ) + ϵ̂
√
∆

. (11)

and
y∗ =

1
ξ · χ

i(ξ)H, (12)

ξ being any vector transversal to the configuration, ξ ·
χ ̸= 0, and ∆ being the following quadratic invariant of
H,

∆ ≡ (y∗ · χ)2 − y2
∗χ

2 = −
1
2
HµνH

µν (13)

that is non-negative, ∆ > 0. Furthermore, it holds that
Hµν(∗H)µν = 0 and then ∆ is the sole essential scalar
invariant of the configuration bivector H (see [5]).

Note that y∗ and ∆ can be computed by using only
the standard data set E.

e orientation ϵ̂ involves the unknown x and is not
always computable from the only data set E. Next, we
suppose that the user is able to observe the relative po-
sitions of the emitters on its celestial sphere. is ob-
servational data will allow the user to determine the ori-
entation ϵ̂ at the reception event, and then, its location.
e set E completed with the above observational data
is called the extended emission data set.

D.Bifurcation problem.- e map Θ is not injective:
for any RPS there always exist pairs of different events
having the same emission coordinates (bifurcation prob-
lem). In fact, we have [4, 5]:

(i) When χ2 6 0 there is only one emission solution
x, and therefore no bifurcation. To obtain the solution,
take ϵ̂ = sgn(u · χ) (where u is any future pointing
time-like vector).

(ii) When χ2 > 0 there are two emission solutions.
ey only differ by their orientation ϵ̂. In this case,
the standard data set E is insufficient to solve the bi-
furcation problem and an extended data set (including
observational information) is necessary to determine ϵ̂,
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and then to obtain the solution corresponding to the real
user.

e region CC ≡ {x ∈ C |χ2 6 0} is called the central
region of the RPS. e orientation ϵ̂ is constant on CC,
and may be evaluated by considering only the data E.
e bifurcation problem always appears in the time-like
region Ct ≡ {x ∈ C |χ2 > 0} = C−CC and, in order to
solve it, we need to calculate ϵ̂ at the ‘true’ space-time
location x of the user.

F . e four emitters are on a circle on the celestial sphere of
the user if, and only if, the user is on an event xwhere the Jacobian
of Θ vanishes, JΘ(x) = 0.

E.Observational rule to obtain ϵ̂.- It becomes appar-
ent that the Jacobian hypersurface

J ≡ {x | JΘ(x) = 0} (14)

is of relevant interest in relativistic positioning, accord-
ing to the following result by Coll and Pozo [6, 9]:

◦ J consists in those events for which any user at them can
see the four emitters on a circle on its celestial sphere.

is result follows from the fact that four null direc-
tions on an event are linearly dependent if, and only if,
the corresponding space-like directions for an observer
at the event lie in a cone (see Fig. 2).

Moreover, the above result (being Lorentz invariant)
suggests that at any event of the emission coordinate re-
gion C = R − J, the orientation ϵ̂ could be obtained
from the relative positions of the emitters on the celes-
tial sphere of the user at this event. In fact, the following
statement was proved elsewhere [5].
Observational rule to determine ϵ̂. In the coordinate re-

gion C, the orientation ϵ̂ of the positioning system may
be obtained as follows:

(i) consider the circle on the celestial sphere of the
user containing the three referred emitters, a = 1, 2, 3,

(ii) turn this circle around its center in the increasing
sense 1 → 2 → 3 to orient the visual axis of the user by
the rule of the right-hand screw,

(iii) if the fourth emitterA = 4 is in the spherical cap
pointing out by this oriented axis, then the orientation
is ϵ̂ = −1, otherwise ϵ̂ = +1.

By applying this observational rule, the users receiv-
ing the extended emission data set can determine the
orientation ϵ̂ and their position in inertial coordinates.

n2

n1

n3

n4

F . A configuration with the reference emitter in the
interior of the circle determined by the referred emitters and
(n⃗1, n⃗2, n⃗3) < 0. Any user at the reception event concludes that
the orientation at its location x is positive, that is ϵ̂ = +1, or
equivalently, JΘ(x) > 0.

Denote by n⃗A the unit vectors along the relative di-
rections of propagation of the signals with respect to a
user of unit velocity u,

mA = −(u ·mA)(u+ n⃗A). (15)

It follows that directions −n⃗1, −n⃗2 and −n⃗3 are con-
tained in the cone confined by the circle, and then, if
the reference emitter is in the interior of the circle, −n⃗4
is in the interior of the cone and ϵ̂ is given by ϵ̂ =
−sgn[(n⃗1, n⃗2, n⃗3)]. Otherwise, ϵ̂ = sgn[(n⃗1, n⃗2, n⃗3)]
(see Fig. 3).

3 Splitting of the solution

Consider the inertial observer associated to the spe-
cific inertial coordinate system {xα}, of unit velocity u,
u2 = −1. is section presents the decomposition, with
respect to this inertial observer, of the quantities appear-
ing in the transformation (10) from emission to inertial
coordinates.
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A. Splitting of the emitter trajectories.- Relatively to
u, the position vector of the emitterA is decomposed as

γA = tAu+ γ⃗A, (A = 1, 2, 3, 4) (16)

where tA ≡ γ0
A is the value of the inertial time of the

observer u at the event γA(τ
A). e vectors mA are

written as

mA ≡ x− γA = (x0 − tA)u+ x⃗− γ⃗A, (17)

and because they are null and future pointing, we have

(x0 − tA)
2 = (⃗x− γ⃗A)

2, x0 > tA, (18)

which constitute the relative expression of the ‘naviga-
tion equations’.

e position vector of the emitter a with respect to
the reference emitter is written as

ea = σau+ e⃗a (a = 1, 2, 3) (19)

where σa = ta − t4 and e⃗a = γ⃗a − γ⃗4. en, the
configuration scalars are expressed as:

Ωa =
1
2
(e⃗ 2

a − σ2
a). (20)

B. Splitting of χ andH.- Substituting (19) in (7) and
taking into account (3) and (5) one has

χ = (e⃗1, e⃗2, e⃗3)u+ σ1 e⃗2 × e⃗3

+σ2 e⃗3 × e⃗1 + σ3 e⃗1 × e⃗2 (21)

so that, χ = χ0u+ χ⃗ with

χ0 = (e⃗1, e⃗2, e⃗3), χ⃗ =
1
2
ϵabcσa e⃗b × e⃗c. (22)

en, we see that:

(i) |χ0| is the volume of the parallelepiped defined by
the relative positions e⃗a of the referred emitters.

(ii) χ⃗ represents a weighted vector-area. e area of
the face generated by e⃗1 and e⃗2 is weighted with
a complementary σ3 factor. e other faces of the
parallelepiped are weighted correspondingly.

As we have seen, on CC the orientation is constant
and is given by ϵ̂ = sgn(u · χ) for any future point-
ing time-like vector u. In particular, if u is an inertial
observer,

ϵ̂ = −sgn(χ0) = −sgn[(e⃗1, e⃗2, e⃗3)], (23)

so that on the central region of a relativistic positioning
system, the orientation ϵ̂ is +1 or −1 if (e⃗1, e⃗2, e⃗3) is,
respectively, negative or positive.

On the other hand, the configuration bivector can be
written as

H = u∧ S⃗− ∗(u∧ B⃗), (24)

where
S⃗ = −i(u)H, B⃗ = −i(u) ∗H (25)

are, respectively, the electric-like and magnetic-like
parts of H relative to u. ey are expressed as:

S⃗ = Ω1 e⃗2 × e⃗3 +Ω2 e⃗3 × e⃗1 +Ω3 e⃗1 × e⃗2 (26)

B⃗ = Ω1(−σ2e⃗3 + σ3e⃗2) +

Ω2(−σ3e⃗1 + σ1e⃗3) +

Ω3(−σ1e⃗2 + σ2e⃗1), (27)

as it follows from (8), (3) and the identity ∗ ∗ F = −F

for any bivector F. Note that S⃗2 > B⃗2 because∆ = S⃗2−

B⃗2 > 0. In [5] it was stated that Eq. (10) allows a user to
locate itself at the hypersurface J of vanishing Jacobian,
and also, that this region is invariantly characterized by
the condition ∆ = 0. en, an inertial observer u will
recognize these events by testing where the electric and
magnetic parts of H become equimodular.

On the other hand, it always occurs that S⃗ · B⃗ = 0,
because the invariant Hµν(∗H)µν identically vanishes.

C. Splitting of y∗ and λ.- From Eq. (12), the relative
decomposition of the quantity y∗ in (10) is obtained by
splitting the vector i(ξ)H. To begin with, notice that
the transversal vector ξ can be chosen so that its time-
like component, ξ0, is equal to one, that is ξ = u + ξ⃗.
us, the transversality condition says that χ0 ̸= ξ⃗ · χ⃗
and by Eqs. (22) and (4) it is written as

(e⃗1, e⃗2, e⃗3) ̸=
1
2
ϵabcσa (ξ⃗, e⃗b, e⃗c), (28)

and then, from (24), we have

i(ξ)H = −S⃗− (ξ⃗ · S⃗)u+ ∗(ξ∧ u∧ B⃗)

= −(ξ⃗ · S⃗)u− S⃗− ξ⃗× B⃗. (29)

erefore, the splitting of y∗ = y0
∗ u + y⃗∗ is given

by:

y0
∗ = −

ξ⃗ · S⃗
D

, y⃗∗ = −
S⃗+ ξ⃗× B⃗

D
, (30)
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where S⃗ and B⃗ are obtained from (26) and (27), and

D ≡ ξ⃗ · χ⃗− (e⃗1, e⃗2, e⃗3) ̸= 0. (31)

It is worthy to say that we still have a complete free-
dom in choosing the transversal vector ξ. is freedom
may be exploited in order to make the expression of the
solution as simple as possible. For example, we can get
ξ = u whenever χ0 = (e⃗1, e⃗2, e⃗3) ̸= 0. en y0

∗ = 0
and y∗ takes the simple form:

y∗ =
e⃗ 2
a − σ2

a

2 (e⃗1, e⃗2, e⃗3)
e⃗a+1 × e⃗a+2. (32)

Eq. (10) gives the solution x for the location problem:
Eqs. (22), (26), (27), (30) and (31) allow to determine
χ = {χ0, χ⃗}, ∆ = S2 − B2 and y∗ = {y0

∗, y⃗∗}, and then
λ,

λ =
−(y0

∗)
2 + y⃗ 2

∗

(−y0
∗χ

0 + y⃗∗ · χ⃗) + ϵ̂
√
S⃗2 − B⃗2

. (33)

Remember that, in any region of C, the orientation ϵ̂

of the RPS may be determined from the observational
rule that we have explained, and that, in addition, this
orientation can be calculated in the central region from
the sole standard data set E.

4 Summary

(i) e standard emission data set E is generically in-
sufficient to locate a user of a positioning system in
an inertial system.

(ii) It is the time-like region Ct (χ2 > 0) where the
bifurcation problem cannot be solved from the sole
standard data set E.

(iii) e data of the orientation joint to the standard
emission data set E solves completely the bifurca-
tion problem, and then the location problem in rel-
ativistic positioning.

(iv) e covariant solution of this location problemmay
be expressed in terms of the space-like and time-
like components of the emission data with respect
to the reference inertial observer.
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Abstract. e tremendous development of clock
accuracy since the first introduction of theGPS po-
sitioning system, together with the ever more ac-
cepted relativistic notion of space-time, requires a
new look at the function and at the basic theoreti-
cal concepts in introducing a system of coordinates.
Based on Newton’s notion of geometry as being
driven by dynamics and Laplace’s understanding
of dynamics as being able to describe motion, we
introduce the covariant notion of an Autonomous
Basis of Coordinates, which is tied to a constella-
tion of freely moving satellites in space. Each satel-
lite is assumed to carry its own (ideal) proper time
clock and is able to send timing signals (emission
coordinates) into space, and receive those signals
(emission coordinates) from all other satellites in
the constellation. We demonstrate that exchange
of timing signals – emission coordinates – between
satellites provides the measure of local space-time
curvature, and thus gives enough information for
building a local quasi Minkowski system of coor-
dinates in which dynamics of free body motion is
describable with the precision limited only by the
accuracy of timing information exchanged between
satellites.

1 Coordinates through time

e notion of coordinates as labels for positions in space
(on the Earth) is obviously a very ancient one. Obser-
vations of certain relations (distance, direction, short-

*Corresponding author. E-mail: andrej.cadez@fmf.uni-lj.si

est path) between positions with different coordinates
(names) led to the development of geometry, while the
observation of changes in our world gave impetus to be-
gin writing history. Both geometric and historical ob-
servations led to the understanding of certain symme-
tries in space that seemed to be independent of time.
e basic axioms that followed from such observations
could be stated as follows:

• Earth, planets and the sky make up the permanent
Universe.

• ere are permanent features in the Universe that
can be described by maps in sufficient detail to be
recognized by seekers.

• Symmetries of the sky are related to those of the
Earth and vice versa

ese axioms were sufficient for the ancients to draw
maps of the known world and successfully use them
in travels and expeditions between distant places. e
new understanding and usefulness of coordinates that
emerged in the 17th century with Descartes, Galileo,
Newton, Laplace, Lagrange ... established coordinates
as sets of numbers that could be used in algebraic ex-
pressions and allowed the description of symmetries and
dynamics in terms of physical causes. With the inven-
tion of accurate clocks by Harrison [7], it became pos-
sible to connect symmetries of the sky and the Earth in
a simply applicable way. By reading positions of stars, it
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became possible to find observer’s coordinates with un-
precedented precision. Until the second half of the 20th

century the only limit to position accuracy appeared to
be limited by clock accuracy. is ceased to be a lim-
itation, as the accuracy of best available clocks has in-
creased by seven (!) orders of magnitude in the last fifty
years. It became thus possible to demonstrate that the
Earth is not rotating as uniformly as expected and is not
as accurately elliptic or homogeneous as was thought be-
fore. Rotation, shape and gravitational potential of the
Earth now emerge as parameters limiting position ac-
curacy. e accuracy by which time and position can
be measured amply demonstrated the validity of general
relativity and necessitated the introduction of relativis-
tic corrections to theNewtonian concept of space. ese
axioms were sufficient for the ancients to draw maps of
the known world and successfully use them in travels
and expeditions between distant places. e new un-
derstanding and usefulness of coordinates that emerged
in the 17th century with Descartes, Galileo, Newton,
Laplace, Lagrange ... established coordinates as sets of
numbers that could be used in algebraic expressions and
allowed the description of symmetries and dynamics in
terms of physical causes. With the invention of accurate
clocks by Harrison [7], it became possible to connect
symmetries of the sky and the Earth in a simply appli-
cable way. By reading positions of stars, it became pos-
sible to find observer’s coordinates with unprecedented
precision. Until the second half of the 20th century the
only limit to position accuracy appeared to be limited
by clock accuracy. is ceased to be a limitation, as the
accuracy of best available clocks has increased by seven
(!) orders of magnitude in the last fifty years. It became
thus possible to demonstrate that the Earth is not ro-
tating as uniformly as expected and is not as accurately
elliptic or homogeneous as was thought before. Rota-
tion, shape and gravitational potential of the Earth now
emerge as parameters limiting position accuracy. e
accuracy by which time and position can be measured
amply demonstrated the validity of general relativity and
necessitated the introduction of relativistic corrections
to the Newtonian concept of space.

In view of these developments, ESA’s Advanced con-
cepts team initiated a study ”Mapping the Spacetime
Metric with a Global Navigation System”. e invita-
tion to the project stipulated a novel perspective on the
meaning and definition of a system of coordinates in the
4-dimensional spacetime. e first step was to rewrite
the basic code, such as used by the GPS system, into
the fully relativistic form based on emission coordinates

introduced by [1]. It was demonstrated in [4] that po-
sition determination from emission coordinates data is
numerically equally efficient yet more accurate than the
classical post-newtonian approach. However, the main
advantage of the fully relativistic formalism is in its con-
ceptual simplicity and accordance with general structure
of spacetime, which, as we now know, must be described
by general relativity.

e second part of the project [5] addressed the self
consistency of a relativistic system of coordinates de-
fined by means of emission coordinates. Namely, we in-
vestigated the accuracy to which the redundant number
of emission coordinates from the constellation of satel-
lites gives the same four spacetime coordinates of a given
event, especially in light of discussions considering the
possibility of intersatellite communication [8].

2 Intersatellite communication and the
ABC concept

e introduction of coordinates in the four dimensional
spacetime requires a consideration of basic premises on
which a system of coordinates is based. We propose
that the the system of coordinates, that is most suit-
able to describe the local spacetime manifold, be defined
in such a way, that generators of equations of motion
(Lagrangian, Hamiltonian) can be correctly expressed
in the chosen system of coordinates, in accordance with
Laplace’s famous quote: ”An intelligence which at a
given instant knew all the forces acting in nature and
the position of every object in the universe – if endowed
with a brain sufficiently vast to make all necessary cal-
culations – could describe with a single formula the mo-
tions of the largest astronomical bodies and those of the
smallest atoms. To such an intelligence, nothing would
be uncertain; the future, like the past, would be an open
book.”

In this respect the International Celestial Reference
Frame (ICRF), which is defined as a quasi inertial refer-
ence frame centered at the barycenter of the Solar Sys-
tem, is a kinematic frame, formed on the assumption
that space time is flat from here to distant quasars. is
assumption appears to be satisfied locally to a high de-
gree of accuracy, but it is not tested dynamically within
the definition of the reference frame. is attitude does
not satisfy the principle of general covariance, which
considers spacetime as a smooth four dimensional mani-
fold with Minkowski local structure, possessing no prior
geometry. Spacetime seems to be flat only on grand
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scales encompassing large volumes [6]. erefore, we
propose to base the definition of spacetime coordinates
on the ancient requirement for its functionality, i.e. a
system of coordinates should allow accurate (as accu-
rate as theoretically possible) orientation in the part of
spacetime covered by its coordinates. e vehicle to ap-
ply this principle is Laplace’s understanding of dynam-
ics. us we propose that the global navigation system
(GNS) of coordinates be based solely on dynamics of all
the satellites composing the GNS constellation of satel-
lites (GNSS).

e basic idea of ABC is that all satellites of a GNSS
move according to laws of motion that follow from a
Hamiltonian, common to all satellites. Ideally, satellites
move only under the influence of gravity and are thus
following geodesics of spacetime. It is expected, that ad-
ditional forces acting on satellites, such as collisions with
micrometeorites, solar radiation pressure, solar wind
pressure, etc. are small and can be counterbalanced in
a drag-free mode. Since light, which propagates emis-
sion coordinates, is tracing spacetime geodesics as well,
one can consider sets of spacetime events along light rays
connecting world lines of two freely falling GNSS satel-
lites, as two dimensional geodetic manifolds with spe-
cific position in the fabric of spacetime. I would like to
call panels such manifolds. All panels, formed by pairs
of all satellites in a GNSS constellation, form a bound-
ary of the spacetime 4-manifold which can be defined as
the interior of the constellation. We intend to show how
panels can be constructed on the basis of emission co-
ordinates exchanged between pairs of satellites and how
panels can be combined to form the boundary of the in-
terior. Once the geometry of the boundary of the inte-
rior is defined by measurement, Einstein’s equations can
be used to extend coordinates inward by using multipole
expansions as described by [2] and [10].

Tiles and Panels

A panel is a two sheeted geodesic two manifold formed
by lightlike geodesics connecting world lines CA and
CB of two freely falling satellites A and B. Lightlike
geodesics from A to B form the first sheet, and those
from B to A the second sheet of the panel, Fig.1. Pan-
els are usually spatially thin, since their relative thick-
ness is generally proportional to the mutual accelera-
tion of supporting satellites. Since any spacetime is
localy Minkowskian, a panel, spanning a sufficiently
small region of spacetime can be embedded in a local
Minkowski frame. Such a small panel or section of

a large panel may be called a tile. It is convenient to
choose the local frame of a tile SAB in such a way that
the two timelike geodesics A and B have opposite ve-
locities as in Fig.1. e world lines CA and CB can be
expressed as follows:

CA :


ct

x

y

z

 =


γc(τA + ∆τ)

γv(τA + ∆τ− τ0)
−y0

0

 (1)

CB :


ct

x

y

z

 =


γc(τB − ∆τ)

−γv(τB − ∆τ− τ0)
y0
0

 , (2)

where γ = 1√
1−v2/c2

. e world lines CA and CB de-
fine the two timelike edges of the tile and the spacelike
geodesic (coeval in the proper frame of the tile) connect-
ing lower ends {CA(τ

i+∆τ),CB(τ
i−∆τ)} can be called

the base of the tile and {CA(τ
f+∆τ),CB(τ

f−∆τ)} the
top of the tile. Note the choice of the local Minkowski
coordinate system orientation: x axis points in the direc-
tion of mutual velocity and the y axis points along the
direction of shortest distance between the two satellites
and z = 0.

Tile parameters velocity v, proper time misalignment
∆τ, proper time mark of closest approach τ0 and closest
distance y0 are constants of motion of geodesics sup-
porting the tile, thus we call them mutual constants
of motion. ey can be determined from exchange of
emission coordinates between A and B as follows: Let
τA

∗(τB) be the the emission coordinate (i.e. proper
time of emission at A) of A received by B at τB and
τB

∗(τA) the emission coordinate of B received by A at
τA. Using the null property of emission coordinates and
equations 1 and 2, one calculates the functions τA∗(τB)
and τB

∗(τA). In order to express the result in a simple
way, we introduce v = tanh(ξ) to obtain:

τA
∗(τB) = (τB − τ0 − ∆τ) cosh(2ξ)

−

√
(τB − τ0 − ∆τ)2 sinh2(2ξ) + 4y2

0

+ τ0 − ∆τ (3)
τB

∗(τA) = (τA − τ0 + ∆τ) cosh(2ξ)

−

√
(τA − τ0 + ∆τ)2 sinh2(2ξ) + 4y2

0

+ τ0 + ∆τ (4)

e constant∆τ is readily determined by observing that
τA

∗(τ+∆τ)+∆τ = τB
∗(τ−∆τ)−∆τ = s(τ), i.e. the
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F . A panel (left) is a two sheeted geodesic manifold formed by lightlike geodesics connecting two timelike geodesics. A tile (right)
is a panel supported by two geodesics moving with opposite velocities with respect to its proper local Minkowski frame. Lightlike geodesics
colored in orange form the front sheet of the tile and transport emission coordinate τA∗ to satellite B, while the lightlike geodesics colored
in red transport τB∗ to A, and form the back sheet of the tile. Timelike sides of a tile are specified by proper time intervals of both satellites
and are denoted as {τi −∆τ, τf −∆τ} and {τi +∆τ, τf +∆τ} respectively. e edges CA(τ

i −∆τ) and CB(τ
i +∆τ) are coeval in

the proper frame of the tile, thus ∆τ may be considered as the proper time misalignment of the two clocks.

curves τA∗(τ) and τB
∗(τ) are identical hyperbolas, but

displaced. e other three constants follow by fitting
s(τ) to a parabola¹ and solving the parabola coefficients
for ξ, τ0 and y0.

Joining tiles

Each pair of satellites generates panels which possess
a definite position in spacetime. As satellites move
in time, newly emerging panels tile the spacetime and
build up the boundary of the interior. ree satellites
support three panels, four satellites support four pan-
els etc. Four panels are sufficient to close the bound-
ary of a four dimensional tube in spacetime, while more
than four satellites create a redundant number of pan-
els creating a multi layer boundary of the four dimen-
sional spacetime tube. e question is how to join panels
and represent them in a common system of coordinates.
Taking into account that, to the best of our knowledge,
the spacetime is locally flat, we can imagine breaking
panels into tiles, small enough to be treated as in flat
spacetime. Tile has a known – measurable – geometry
and fits to its neighbors. Fitting tiles into the spacetime

¹Parabola is a good enough approximation of a hyperbola on a
small tile.

tube is just like fitting LEGO blocks according to the
instruction book that comes with the set. e only dif-
ference between fitting LEGO blocks and tiles is that
LEGO blocks are moved by generators of the Galileo
group in a flat space, while tiles are moved by generators
of the local Poincare group in a curved spacetime.

We first consider a tiling procedure in the locally
flat spacetime volume, starting by joining three adjacent
tiles P12, P23, P32, generated by orbits C1, C2, C3. Since
the base of a tile is coeval, we start by translating the
three tiles, so that their bases join and form a triangle.
If this was the first triangle formed, one can align the co-
ordinates of the common Minkowski frame so that this
triangle is in the x− y plane. At this stage the position
of tiles in the common Minkowski frame looks like the
one shown in Fig.2. Each geodesic is still represented
by edges of two adjacent tiles. In order to join them,
one simply needs to apply boosts in directions perpen-
dicular to tile’s bases, which by now have been oriented.
e procedure is somewhat tedious but straightforward
and is helped by taking into account the laws of mo-
tion along geodesics in flat spacetime which lead to the
following statements: a) the sum of tile velocities must
point along the common time axis and b) the total an-
gular momentum of tiles is perpendicular to the x − y
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plane. e angular momentum of a tile with respect to
the commonMinkowski frame is the sum of its spin and
orbital angular momentum, which are defined as:

s
µ
T =

2∑
i=1

εµνλσU
ν
(
Cλ
i Ċ

σ
i − Cσ

i Ċ
λ
i

)
lµorb = 2εµ0λσ

(
Cλ
TU

σ − Cσ
TU

λ
)

, (5)

where CT (τ) is the worldline (geodesic) of the tile ori-
gin with respect to the common Minkowski frame ori-
gin and U is the velocity four vector of CT . e above
construction gives a complete description of motion of
satellites #1, #2 and #3 on the time interval considered,
with respect to their common Minkowski frame, de-
fined by the base triangle T123. One can repeat the same
procedure with tiles supported by satellites #2, #3 and #4
to obtain a triangle T234, which shares the side S23 with
T123, and so on, until all the four triangle faces of a tetra-
hedron are obtained. Finally the faces are joined into a
tetrahedron oriented in the local Minkowski frame of
triangle T123. is completes the joining of all panels
supported by the four satellites and coordinatizes a four
dimensional structure V1234 enclosing a section of the
spacetime manifold.

As long as spacetime was believed to be flat, it was
expected that the complete spacetime, from here to dis-
tant quasars, can be filled with exactly equal tetrahedral
structures.

e above procedure to join tiles to build triangles,
triangles to build tetrahedra and tetrahedra to build the
four-dimensional simplex structures is based on geom-
etry, which requires tiles being translated to fit their
bases, and on dynamics, which, in flat space, assures
that tiles, supported by timelike geodesics, can be joined
along timelike edges, if their total angular momentum
points perpendicular to the base triangle. is second
condition may not be met in curved space. As a conse-
quence, tiles can in curved space only be matched along
two timelike edges and may leave a gap along the re-
maining edge as shown in Fig.3. is gap is the direct
consequence of curvature and can be expressed with the
Riemann tensor as

δUµ =
1
2
Rµ

νλσU
νaλbσ, (6)

where U is the timelike edge of the tile along the gap,
which is transported along the bases of the three pan-
els, a, b, c, and δU is the difference across the gap. In
principle one can always make the four volume of the

structure V1234 sufficiently small to make the gap neg-
ligible. So one can continue adding small tetrahedrons,
such as V1234, to adjacent sides, just as a good tiler can
tile a crooked wall with small square tiles. However,
the infinitesimally small misalignments eventually add
up and cause straight lines to appear curved.

e ABC proposal

e Autonomous Basis of Coordinates proposal is based
on the idea that spacetime, whether flat or curved, can
in principle be tiled [9].

Flat spacetime (if it would exist) could be tiled with a
periodic structure of equal tiles and would be coordina-
tized by four numbers counting the number of tiles from
the origin in direction of time and in the three spatial
directions. e usefulness of such a Cartesian coordi-
natization comes from our ability to express the laws of
motion in such a system of coordinates. For a long time
the Cartesian coordinatization was considered as a nat-
ural realization of inherent spacetime symmetries, and
was thus taken as an axiom needing no testing. Today,
this belief can no longer be supported as practical, since
tiles and panels supported by GPS satellites can be mea-
sured with sufficient precision to actually demonstrate
the curvature of spacetime. We propose to anchor the
ABC system of coordinates on the tiling of spacetime
panels provided by GNSS satellites. Since the space-
time around the Earth, where GNSS satellites are mov-
ing, is sufficiently curved to keep satellites indefinitely
orbiting the Earth, and it is not practical to increase the
density of satellites so that they would define very small
tiles, it makes sense to join the small tiles in panels,
which can fit the curvature of spacetime for as as long
and as far, as one can find agreement between measured
and dynamically predicted panel characteristics. As a
first step in constructing such panels we start with the
Schwarzschild space time, which may conveniently be
coordinatized by isotropic coordinates with the metric²:

ds2 = −

(
1 − M

2r

1 + M
2r

)2

dt2+

(
1 +

M

2r

)4

(dx2 + dy2 + dz2), (7)

where r =
√
x2 + y2 + z2. A typical panel, sup-

ported by two satellites is represented in Fig4. Since the
Schwarzschild spacetime does not possess translational

²Units c = G = 1 are used.
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Joining three tiles. First join bases at tinitial and obtain a triangle,
whose internal angles can be calculated. In left panel each geodesic is
represented in two panels. In order to join the two images of a geodesic
into a single line, one boosts each panel with a velocity perpendicular
to its lower edge.

F .

ree tiles do not automatically fit in the tangent Minkowski space
of a curved manifold. e vector U, when parallel transported along
the base triangle, suffers a geodesic deviation δU that shows as a gap
between the tips of the two images of U.

F .

symmetry, panels can not be translated or boosted, but
can only be rotated. is fact actually simplifies the pro-
cedure of panel fitting, since two panels with a common
edge can always be joined along this edge by applying a
rotation.

A Schwarzschild panel can be characterized by nine
mutual constants ofmotion belonging to its pair of satel-
lites (A and B). We use the following quantities as mu-
tual constants: semi-major axes aA, aB, orbital eccen-
tricities εA, εB, mutual inclination ι, longitude of line
of nodes of A’s with respect to B’s orbit Ω, longitude
of A’s periastron with respect to line of nodes ω, proper
times of first periastron passage of the two satellites τperi

A ,
τ

peri
B . We could show, to some surprise, that mutual con-

stants can be determined by each of the satellites solely
by fitting the function τ∗A (τB) (or τ∗B (τA)) to theoret-
ically predicted relations, with mutual constants as fit-
ting parameters [5]. e fitting procedure was tested
numerically on different sets of simulated data, stretch-
ing from 1 to 4 orbital periods in time. Our simulated
data imitated data that would be obtained from Galileo
GNSS and included timing noise simulations expressed
in terms of Allan deviation. In all cases the fitting proce-
dure returned values of mutual constants, which allowed
the precision of orbital prediction to be limited essen-
tially by timing accuracy of satellite clocks³. A sample of

³is statement reflects a general experience with our numerical
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A panel in the Schwarzschild spacetime displayed in isotropic quasi
Cartesian coordinates

F .

our results showing the accuracy of orbital axis determi-
nation and the uncertainty of timing origin as functions
of Allan deviation of satellite’s clocks is shown in Fig.5.

us, clocks, and clocks only, define the measure of
panels. In this respect it is worth noting that each panel
is measured by two satellites. erefore, mutual con-
stants obtained by both satellites must be equivalent,
which is a constraint defining the meaning of proper
time. A disagreement can only arise, in the framework
of general relativity, if satellite clocks fail to measure
proper time, thus, the comparison of mutual constants
offers a rigorous check of clock rates. Atomic clocks,
with their fundamentally defined rate, thus provide the
fundamental gauge for spacetime geometry.

e spacetime around the Earth is not quite
Schwarzschild, since it is perturbed by the Sun, Moon,
Earth obliquity, rotation, planets... As a result,
Schwarzschild panels do not fit indefinitely in the space-
time of our neighborhood. Sooner or later geodesic de-
viation, such as described by equation (6), with Rie-
mann curvature replaced by its deviation from the
Schwarzschild one, would become apparent. One can
imagine to coordinatize our spacetime with sufficiently
small Schwarzschild panels, which would eventually
show deviations from large Schwarzschild panels. After
deviations have built into measurable discrepancies, one
can determine deviations of the Riemann tensor from
the assumed one, and correct the metric accordingly. In
this way one can construct new, better fitting panels.

experiments performed on a limited set of parameters, and with lim-
ited numerical accuracy.

e procedure can be repeated until the smallest mea-
surable mismatch between panels is observed.

e ABC system of coordinates is thus a system of
coordinates based on panels that fit the local spacetime
geometry to the highest precision measurable.

In order to get an idea of the order of magnitude
of expected mismatch between panels we note that the
Schwarzschild Riemann tensor components can be ex-
pressed in the form:

Rµ
νλσ =

GM

c2r5(1 + M
2r )

2
Pµ

νλσ(x,y, z) , (8)

where Pµ
νλσ(x,y, z) are quadratic polynomials, for ex-

ample P0
101 = 2x2 − y2 − z2. Taking GMEarth

c2r3 as the
rough magnitude of Riemann tensor components due to
Earth mass at the the distance of the Galileo satellites,
we obtain Rµ

νλσ ∼ 3.5 × 10−25 m−2. ree satellites
orbiting in a plane in an equilateral triangle formation,
form a triangle with the side a ∼ 4 × 104 km. Ac-
cording to equation (6), three Minkowski tiles would
be mismatched after 1 second by approximately δU ∼

3.5×10−25 m−2 1
2 (4×107 m)2

√
3

2 1 sec 3×108 m/sec ∼

0.07 m. In other words δU/U ∼ 2.4 × 10−10, which is
readily measurable. e contribution of the Moon to
the local Riemann curvature is about 2.4 × 10−6 that
of the Earth, while that of the Sun is half as much the
Moon’s. us, Schwarzschild panels with a time base of
about 3 days (= 1 sec

3.6×10−6 ) are expected to show a 0.07 m
gap. Such a gap represents a ∼ 10−15th part of the tem-
poral side of the panel, and is about at the limit of what
an average a standard cesium atomic clock can measure
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F . Time origin and orbital axis uncertainty as functions of clock timing noise.

today, but a hundred times above the limit of the best
clock reported as of today [3].

3 Conclusion

e ABC system of coordinates is a concept based on
parceling spacetime into covariant panels, which are
constructed with null surfaces, connecting world lines
of bodies (satellites), freely falling in the local spacetime
geometry. In the ABC system coordinates are defined
only by clocks. erefore, the dynamical position of a
body in the part of spacetime, covered by ABC coordi-
nates, is defined with the accuracy of clock reading.

In order to establish an ABC system, two require-
ments must be fulfilled: 1) GNSS satellites must com-
municate and exchange emission coordinates, and 2)
ABC satellites must move on geodesics of spacetime,
i.e. they should by influenced only by local gravity and
no other forces (or other forces would have to be accu-
rately known). e second requirement could in princi-
ple be met by making satellites drag-free or by measur-
ing their acceleration with sufficient accuracy. Small,
random forces such as due to micrometeorite hits are
sufficiently rare that the sudden change of orbital pa-
rameters of one satellite in the constellation would be
readily detected and taken into account by other mem-
bers of the constellation.

e benefits of establishing an ABC would be nu-
merous and would grow with time as the system of co-
ordinates would increase its accuracy through better un-
derstanding of nongravitational forces influencing satel-
lite dynamics, through improved accuracy of clocks and
through improved accuracy of intersatellite communica-
tion. Sub-millimeter accuracy which appears reachable
with today’s standard atomic clocks (c.f. Fig.5), could be
a formidable tool for studying Earth dynamics including

continental drift, tectonic and volcanic activity, magma
flow, ocean currents, erosion, etc. Also, the ABC pro-
vides a logical and most precise definition of coordinate
time by which ABC should be connected to ICRS.
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Abstract. We present the latest developments in
the field of atomic clocks and their applications in
metrology and fundamental physics. In the light
of recent advents in the accuracy of optical clocks,
we present an introduction to the relativistic mod-
elization of frequency transfer and a detailed review
of chronometric geodesy.

1 Introduction

Atomic clocks went through tremendous evolutions and
ameliorations since their invention in the middle of the
twentieth century. e constant amelioration of their
accuracy (figure 1) and stability permitted numerous ap-
plications in the field of metrology and fundamental
physics. For a long time cold atom Caesium fountain
clocks remained unchallenged in terms of accuracy and
stability. However this is no longer true with the re-
cent development of optical clocks. is new generation
of atomic clock opens new possibilities for applications,
such as chronometric geodesy, and requires new devel-
opments, particularly in the field of frequency transfer.
e LNE-SYRTE laboratory (CNRS/LNE/Paris Ob-
servatory/UPMC) is involved inmany aspects of the de-
velopment of atomic clocks and their applications.

In section 2 we present the latest developments in
the field of atomic clocks: microwave clocks, optical
clocks, their relation to international time-scales, means
of comparisons and applications. Section 3 is an intro-
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duction to relativistic time transfer, the modelization of
remote frequency comparisons, which lies at the heart
of many applications of atomic clocks, such as the re-
alization of international time-scales and chronometric
geodesy. Finally, section 4 is a detailed review of the
field of chronometric geodesy, an old idea which could
become reality in the near future.

2 Atomic clocks

In 1967, the definition of the SI second was changed
from astronomical references to atomic references by
setting the frequency of an hyperfine transition in the
Cs atom [39]. Since then, the accuracy of atomic clocks
has improved by five orders of magnitude, enabling bet-
ter and better time-keeping. More recently, a new gen-
eration of atomic clocks, based on atomic transitions in
the optical domain are challenging the well established
Cs standard and thus offer opportunities for new appli-
cations in fundamental physics and geodesy.

2.1 Microwave clocks

In a microwave atomic frequency standard, a microwave
electro-magnetic radiation excites an hyperfine elec-
tronic transition in the ground state of an atomic species.
Observing the fraction of excited atoms p after this in-
teraction (or transition probability) gives an indicator
of the difference between the frequency ν of the mi-
crowave radiation and the frequency ν0 of the hyperfine
atomic transition. is frequency difference ν − ν0 (or
error signal) is fed in a servo-loop that keeps the mi-
crowave radiation resonant with the atomic transition.
According to Fourier’s relation, the frequency resolu-
tion that can be achieved after such an interrogation
procedure grows as the inverse of the interaction time
T , and since consecutive interrogations are uncorrelated,
the frequency resolution further improves as the square
root of the total integration time τ. Quantitatively, the
residual frequency fluctuation of the microwave radia-
tion locked on the atomic resonance are (in dimension-
less fractional units, that is to say divided by the mi-
crowave frequency):

σy(τ) =
ξ

ν0T
√
N

√
Tc

τ
, (1)

where Tc is the cycle time (such that τ/Tc is the num-
ber of clock interrogations), and N is the number of si-
multaneously (and independently) interrogated atoms.

ξ is a numerical constant, close to unity, that depends
on the physics of the interaction between the radiation
and the atoms. is expression is the ultimate frequency
(in)stability of an atomic clock, also called the Quantum
Projection Noise (QPN) limit, referring to the quantum
nature of the interaction between the radiation and the
atoms. It is eventually reached if all other sources of
noise in the servo-loop are made negligible.

As seen from eq. (1), an efficient way to improve the
clock stability is to increase the interaction time T . e
first atomic clocks therefore comprised a long tube in
which a thermal beam of Cs atoms is traveling while
interacting with the microwave radiation.
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F . Atomic fountain clock. About 106 cold atoms, at a tem-
perature of 1 µK are launched upwards by pushing laser beams. At
the beginning and the end of their trajectory, they interact with
a microwave radiation in a resonator and the hyperfine transi-
tion probability is measured by an optical detection. When scan-
ning the microwave frequency, the transition probability follows
a fringe (Ramsey) pattern much like a double slit interference pat-
tern. During the clock operation, the microwave frequency is locked
on the top of the central fringe. e frequency stability, defined by
eq. (1), is a few 10−14 after 1 s, and a statistical resolution down to
10−16 is reached after a few days of continuous operation [12, 30].
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e advance in the physics of cold atoms enabled to
prepare atoms with a smaller velocity and consequently
largely increase the interaction time, thus the frequency
stability of atomic standards. In cold atoms clocks, the
interrogation time is only limited by the time after which
the atoms, exposed to gravity, escape the interrogation
zone. In the atomic fountain clock (see fig. 2), a set
of cold atoms are launched vertically in the interaction
zone and are interrogated during their parabolic flight
in the Earth gravitational field.

In micro-gravity, atoms are not subject to the Earth
gravitational field and thus can be interrogated during
a longer time window T . is will be the case for the
Pharao space microwave clock [7].

e reproducibility of an atomic clock stems from the
fact that all atoms of a given species are rigorously in-
distinguishable. For instance, two independent atomic
clocks based on caesium will produce the same fre-
quency (9,192,631,770 Hz exactly in the SI unit sys-
tem), regardless of their manufacturer or their location
in space-time.

However, in laboratory conditions, atoms are sur-
rounded by an experimental environment that perturbs
their electronic state and thus slightly modify their res-
onance frequency in a way that depends on experimen-
tal conditions. For instance, atoms will interact with
DC or AC electro-magnetic perturbations, will be sen-
sitive to collisions between them in a way that depends
on the atomic density or to the Doppler effect resulting
from their residual motion…Such systematic effects, if
not evaluated and corrected for, limit the universality of
the atomic standard. Consequently, the accuracy of a
clock quantifies the uncertainty on these systematic ef-
fects. Currently, the best microwave atomic fountain
clocks have a relative accuracy of 2 × 10−16, which is
presumably their ultimate performances given the many
technical obstacles to further improve this accuracy.

2.2 SI second and time scales

About 250 clocks worldwide, connected by time and
frequency transfer techniques (mainly through GNSS
signals) realize a complete architecture that enable the
creation of atomic time scales. For this, local time scales
physically generated by metrology laboratories are a pos-
teriori compared and common time-scales are decided
upon. the International Bureau for Weights and Mea-
sures (BIPM) in Sèvres (France) is responsible for es-
tablishing the International Atomic Time (TAI). First a
free atomic time-scale is build, the EAL. However, this

time-scale is free-running and the participating clocks
do not aim at realizing the SI second. e rate of EAL is
measured by comparison with a few number of caesium
atomic fountains which aim at realizing the SI second,
and TAI is then derived from EAL by applying a rate
correction, so that the scale unit of TAI is the SI second
as realized on the rotating geoid [11]. It necessary to
take into account the atomic fontain clocks frequency
shift due to relativity (see section 3). Recently, a change
of paradigm occured in the definition of TAI. According
to UAI resolutions [36], TAI is a realization of Terres-
trial Time (TT), which is defined by applying a constant
rate correction to Geocentric Coordinate Time (TCG).
is definition has been adopted so that the reference
surface of TAI is no longer the geoid, which is not a
stable surface (see section 4). Finally, the Coordinated
Universal Time (UTC) differs from TAI by an integer
number of second in order to follow the irregularities of
the Earth rotation.

e publication of such time-scales enables world-
wide comparison of Cs fountain clocks [30, 31] and the
realization of the SI second.

2.3 Optical clocks

A new generation of atomic clocks have appeared in the
last 15 years. ese clocks consist in locking an elec-
tromagnetic radiation in the optical domain (ν = 300
to 800 THz) to a narrow electronic transition. As
seen from eq. (1), increasing the frequency ν0 of the
clock frequency by several orders of magnitude drasti-
cally improves the ultimate clock stability, even though
the number of interrogated atoms N is usually smaller
in optical clocks. Increasing the clock frequency also
improves the clock accuracy since most systematic ef-
fects (sensitivity to DC electromagnetic fields, cold col-
lisions…) are of the same order of magnitude in fre-
quency units, and thus decrease in relative units. How-
ever, two notable exceptions remain, and both have trig-
gered recent research in optical clocks. First, the sen-
sitivity of the clock transition frequency on the ambi-
ent black-body radiation is mostly rejected inmicrowave
clocks but not for optical transitions. us, the uncer-
tainty on this effect usually only marginally improves
when going to optical clocks (with the notable excep-
tion of a few atomic species such as Al+ for which the
sensitivity is accidentally small). erefore, extra care
has to be taken to control the temperature of the atoms
environment. Second, the Doppler frequency shift δν
due to the residual velocity v of the atoms scales as the
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F . Sr optical lattice clock. e clock laser, prestabilized
on an ultra-stable optical cavity, probes an optical transition of
104 atoms confined in an optical lattice. e excitation fraction (or
transition probability) is detected by a fluorescence imaging and a
numerical integrator acts on a frequency shifter (FS) to keep the
laser on resonance with the atomic transition. e width of the res-
onance is Fourier-limited at 3Hz, which, given the clock frequency
ν0 = 429 THz, yields a resonance quality factorQ = 1.4×1014,
compared to 1010 for microwave clocks.

clock frequencyν0, such that the relative frequency shift
remains constant:

δν

ν0
=

v

c
(2)

For this reason, the fountain architecture, for which the
Doppler effect is one of the limitations, cannot be appli-
cable to optical clocks, and the atoms have to be tightly
confined in a trapping potential to cancel their veloc-
ity v. To achieve this goal, two different technologies
have been developed. First, a single ion is trapped in a
RF electric field. ese ion optical clocks [34, 8, 16, 25]
achieve record accuracies at 9 × 10−18. However, since
only a single ion is trapped (N = 1, because of the elec-
trostatic repulsion of ions), the stability of theses clocks
is limited at the QPN level of 2 × 10−15 at 1 s. Sec-
ond, a more recent technology involves trapping of a
few thousands neutral atoms in a powerful laser standing
wave (or optical lattice) by the dipolar force. Due to its
power, this trapping potential is highly perturbative, but
for a given ”magic” wavelength of the trapping light [38],
the perturbation is equal for the two clock levels, hence
cancelled for the clock transition frequency. ese opti-
cal lattice clocks [38, 21, 29, 23, 26] have already reached
an accuracy of 1 × 10−16 and are rapidly catching up
with ion clocks. Furthermore, the large number of in-
terrogated atoms allowed the demonstration of unprece-
dented stabilities (a few 1×10−16 at 1 s), heading toward
their QPN below 1 × 10−17 at 1 s.

2.4 Remote comparison of optical frequencies

e recent breakthrough of performances of optical
clocks was permitted by the development of frequency
combs [44], which realizes a ”ruler” in the frequency do-
main. ese lasers enable the local comparison of differ-
ent optical frequencies and comparisons between optical
and microwave frequencies. However, although optical
clocks now largely surpass microwave clocks, a complete
architecture has to be established to enable remote com-
parison of optical frequencies, in order to validate the
accuracy of optical clocks, build ”optical” time-scales,
or enable applications of optical clocks such as geodesic
measurements Indeed, the conventional remote fre-
quency comparisons techniques, mainly through GPS
links, cannot reach the level of stability and accuracy re-
alized by optical clocks.
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Fibre links

To overcome the limitations of remote clock compar-
isons using GNSS signals, comparison techniques us-
ing optical fibres are being developed. For this, a sta-
ble and accurate frequency signal produced by an optical
clock is sent through a fibre optics that links metrology
institutes, directly encoded in the phase of the optical
carrier. Because of vibrations and temperature fluctu-
ations, the fibre adds a significant phase noise to the
signal. is added noise is measured by comparing the
signal after a round trip in the fibre to the original sig-
nal, and subsequently cancelled. Such a signal can be
transported through a dedicated fibre (dark fibre) when
available [33], or, more practically along with the in-
ternet communication (dark channel) [24]. ese com-
parison techniques are applicable at a continental scale ;
such a networkwill presumably be in operation through-
out Europe in the near future. In particular, the RE-
FIMEVE+ project will provide a shared stable opti-
cal oscillator between a large number of laboratories in
France, with a number of applications beside metrol-
ogy. is network will be connected to international fi-
bre links (NEAT-FT project¹) that will enable long dis-
tance comparisons between optical frequency standards
located in various nationalmetrology laboratories in Eu-
rope. e ITOC project² aims at collecting these com-
parisons result to demonstrate high accuracy frequency
ratios measurements and geophysical applications.

Space-based links

When considering inter-continental time and fre-
quency comparisons, only satellite link are conceivable.
In this aspect, e two-way satellite time and frequency
transfer (TWSTFT) involves a satellite that actively re-
lays a frequency signal in a round-trip configuration.
Also, the space mission Pharao-ACES [7] that involves
an ensemble of clocks on board the International Space
Station will comprise a number of ground receiver able
to remotely compare optical clocks.

2.5 Towards a new definition of the SI second based
on optical clocks

Unlike microwave clocks, for which Cs has been an un-
questionable choice over half a century, a large num-
ber of atomic species seem to be equally matched as a

¹http://www.ptb.de/emrp/neatft_home.html
²http://projects.npl.co.uk/itoc/

new frequency standard based on an optical transition.
Ion clocks with Hg+, Al+, Yb+, Sr+, Ca+ have been
demonstrated, as well as optical lattice clocks with Sr,
Yb and more prospectively Hg and Mg. As an illustra-
tion, four optical transitions have already been approved
by the CIPM (International Committee for Weights
andMeasures) as secondary representation of the SI sec-
ond. erefore, although the SI second would already
gain in precision with optical clock, a clear consensus
has yet to emerge before the current microwave defined
SI second can be replaced.

2.6 Applications of optical clocks

e level of accuracy reached by optical clocks opens a
new range of applications, through the very precise fre-
quency ratios measurements they enable. In fundamen-
tal physics, they enable the tracking of dimension-less
fundamental constants such as the fine structure con-
stant α, the electron to proton mass ratio µ = me/mp,
or the quantum chromodynamicsmass scalemq/ΛQCD.
Because each clock transition frequency have a different
dependence on these constants, their variations imply
drifts in clock frequency ratios that can be detected by
repeated measurements. Currently, combined optical-
to-optical and optical-to-microwave clock comparisons
put an upper bound on the relative variation of funda-
mental constants in the 10−17/yr range [34, 13, 21, 22].
Other tests of fundamental physics are also possible with
atomic clocks. e local position invariance can be
tested by comparing frequency ratios in the course of
the earth rotation around the earth [13, 21], and the
gravitational red-shift will be tested with clocks during
the Pharao-ACES mission.

e TAI time scale is created from Cs standards, but
recently, the Rb microwave transition started to con-
tribute. In the near future, secondary representations
of the SI second based on optical transitions could con-
tribute to TAI, which would thus benefit from their
much improved stability.

Clock frequencies, when compared to a coordinate
time-scale, are sensitive to the gravitational potential of
the Earth (see section 3). erefore it is necessary to
take into account their relative height difference when
building atomic time-scales such as TAI. However, the
most accurate optical clocks can resolve a height differ-
ence below 10 cm, which is a scale at which the global
gravitational potential is unknown. Because of this, op-
tical clock could become a tool to precisely measure this
potential. ey come as a decisive addition to relative
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and absolute gravimeters which are sensitive to the grav-
itational field, and to satellite based measurement which
lack spatial resolution (see section 4).

3 Relativistic frequency transfer

In distant comparisons of frequency standards, we are
face with the problem of curvature of space and relative
motion of the clocks. ese two effects change locally
the flow of proper time with respect to a global coor-
dinate time. In this section we describe how to com-
pare distant clock frequencies by means of an electro-
magnetic signal, and how the comparison is affected by
these effects.

3.1 e Einstein Equivalence Principle

a) b)

F . A photon of frequency νA is emitted at point A toward point
B, where the measured frequency is νB. a) A and B are two points at
rest in an accelerated frame, with acceleration a⃗ in the same direction as
the emitted photon. b) A and B are at rest in a non accelerated (locally
inertial) frame in presence of a gravitational field such that g⃗ = −a⃗.

Before we treat the general case, let’s try to under-
stand in simple terms what is the frequency shift ef-
fect. Indeed, it can be seen as a direct consequence
of the Einstein Equivalence Principle (EEP), one of
the pillars of modern physics [27, 41]. Let’s consider
a photon emitted at a point A in an accelerated ref-
erence system, toward a point B which lies in the di-
rection of the acceleration (see fig.4). We assume that
both point are separated by a distance h0, as measured
in the accelerated frame. e photon time of flight is
δt = h0/c, and the frame velocity during this time in-
creases by δv = aδt = ah0/c, where a is the magni-
tude of the frame acceleration a⃗. e frequency at point
B (reception) is then shifted because of Doppler effect,

compared to the frequency at point A (emission), by an
amount:

νB

νA

= 1 −
δv

c
= 1 −

ah0

c2 (3)

Now, the EEP postulates that a gravitational field g⃗ is
locally equivalent to an acceleration field a⃗ = −g⃗. We
deduce that in a non accelerated (locally inertial) frame
in presence of a gravitational field g⃗:

νB

νA

= 1 −
gh0

c2 (4)

where g = |g⃗|, νA is the photon frequency at emis-
sion (strong gravitational potential) and νB is the pho-
ton frequency at reception (weak gravitational field). As
νB < νA, it is usual to say that the frequency at the
point of reception is “red-shifted”. One can consider it
in terms of conservation of energy. Intuitively, the pho-
ton that goes from A to B has to “work” to be able to
escape the gravitational field, then it looses energy and
its frequency decreases by virtue of E = hν, with h the
Planck constant.

F . Two clocks A and B are measuring proper time along their
trajectory. One signal with phase S is emitted by A at proper time τA,
and another one with phaseS+dS at time τA+dτA. ey are received
by clockB respectively at time τB and τ+ dτB.

3.2 General case

e principle of frequency comparison is to measure the
frequency of an electromagnetic signal with the help of
the emitting clock,A, and then with the receiving clock,
B. We obtain respectively two measurements νA and
νB ³. Let S(xα) be the phase of the electromagnetic

³However, in general one measures the time of flight of the elec-
tromagnetic signal between emission and reception. en the ratio
νA/νB can be obtain by deriving the time of flight measurements.
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signal emitted by clock A. It can be shown that light
rays are contained in hypersurfaces of constant phase.
e frequency measured by A/B is:

νA/B =
1

2π
dS

dτA/B

(5)

where τA/B is the proper time along the worldline of
clock A/B (see fig.5). We introduce the wave vector
k
A/B
α = (∂αS)A/B to obtain:

νA/B =
1

2π
kA/B
α uα

A/B (6)

where uα
A/B = dxαA/B/dτ is the four-velocity of clock

A/B. Finally, we obtain a fundamental relation for fre-
quency transfer:

νA

νB

=
kAαu

α
A

kBαu
α
B

(7)

is formula does not depend on a particular theory, and
then can be used to perform tests of general relativity.
Introducing vi = dxi/dt and k̂i = ki/k0, it is usually
written as:

νA

νB

=
u0
A

u0
B

kA0
kB0

1 +
k̂A
i vi

A

c

1 +
k̂B
i vi

B

c

(8)

From eq. (5) we deduce that:

νA

νB

=
dτB
dτA

=

(
dt
dτ

)
A

dtB
dtA

(
dτ
dt

)
B

(9)

We suppose that space-time is stationary, ie.
∂0gαβ = 0. en it can be shown that k0 is constant
along the light ray, meaning that kA0 = kB0 . We intro-
duce the time transfer function:

T(xiA, xiB) = tB − tA (10)

Deriving the time transfer function with respect to tA
one obtains:

dtB
dtA

=
1 + ∂T

∂xi
A

viA

1 − ∂T
∂xi

B

viB
(11)

Inserting eq. (11) in eq. (9), and comparing with eq. (8),
we deduce:

k̂Ai = c
∂T

∂xiA
, k̂Bi = −c

∂T

∂xiB
(12)

General formula for non-stationary space-times can be
found in [14, 20].

As an exemple, let’s take the simple time transfer
function:

T(xiA, xiB) =
RAB

c
+ O

(
1
c3

)
(13)

where RAB = |Ri
AB| and Ri

AB = xiB − xiA. en we
obtain:

dtB
dtA

=
1 + N⃗AB ·⃗vA

c
+ O

(
1
c3

)
1 + N⃗AB ·⃗vB

c
+ O

(
1
c3

) (14)

where Ni
AB = Ri

AB/RAB. Up to the second order, this
term does not depend on the gravitational field but on
the relative motion of the two clocks. It is simply the
first order Doppler effect.

e two other terms in eq. (9) depend on the relation
between proper time and coordinate time. In a met-
ric theory one has c2dτ =

√
gαβdxαdxβ. We deduce

that:

u0
A

u0
B

=

[
g00 + 2g0i

vi

c
+ gij

vivj

c2

]1/2

B[
g00 + 2g0i

vi

c
+ gij

vivj

c2

]1/2

A

(15)

3.3 Application to a static, spherically symmetric
body

As an example, we apply this formalism for the case
of a parametrized post-Minkowskian approximation of
metric theories. is metric is a good approximation of
the space-time metric around the Earth, for a class of
theories which is larger than general relativity. Choos-
ing spatial isotropic coordinates, we assume that the
metric components can be written as:

g00 = −1 + 2(α+ 1)
GM

rc2 + O

(
1
c4

)
g0i = 0 (16)

gij = δij

[
1 + 2γ

GM

rc2 + O

(
1
c4

)]
where α and γ are two parameters of the theory (for
general relativity α = 0 and γ = 1). en:

dτ
dt = 1 − (α+ 1)

GM

rc2 −
v2

2c2 + O

(
1
c4

)
(17)
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where v =
√
δijvivj. e time transfer function of such

a metric is given in eq. (108) of [20]. en we calculate:

dtB
dtA

=
qA + O

(
1
c5

)
qB + O

(
1
c5

) (18)

where

qA =1 −
N⃗AB · v⃗A

c
−

2(γ+ 1)GM

c3 × (19)

RABN⃗A · v⃗A + (rA + rB)N⃗AB · v⃗A
(rA + rB)2 − R2

AB

qB =1 −
N⃗AB · v⃗B

c
−

2(γ+ 1)GM

c3 × (20)

RABN⃗A · v⃗B − (rA + rB)N⃗AB · v⃗B
(rA + rB)2 − R2

AB

Let assume that both clocks are at rest with respect
to the chosen coordinate system, ie. v⃗A = 0⃗ = v⃗B and
that rA = r0 and rB = r0 + δr, where δr ≪ r0. en
we find:

νA − νB

νB

= (α+ 1)
GM

r2
0c

2 δr+ O

(
1
c4

)
(21)

e same effect can be calculated with a different, not
necessarily symmetric gravitational potential w(t, xi).
e results yields:

νA − νB

νB

=
wA −wB

c2 + O

(
1
c4

)
(22)

is is the classic formula given in textbooks for the
“gravitational red-shift”. However one should bear in
mind that this is valid for clocks at rest with respect to
the coordinate system implicitly defined by the space-
time metric (one uses usually the Geocentric Celestial
Reference System), which is (almost) never the case.
Moreover, the separation between a gravitational red-
shift and a Doppler effect is specific to the approxi-
mation scheme used here. One can read the book by
Synge [37] for a different interpretation in terms of rel-
ative velocity and Doppler effect only.

We note that the lowest order gravitational term in
eq. (21) is a test of the Newtonian limit of metric theo-
ries. Indeed, if one wants to recover the Newtonian law
of gravitation for GM/rc2 ≪ 1 and v ≪ 1 then it is
necessary that α = 0. en this test is more fundamen-
tal than a test of general relativity, and can be interpreted

as a test of Local Position Invariance (which is a part of
the Einstein Equivalence Principle). See [41, 42] for
more details on this interpretation, and a review of the
experiments that tested the parameter α.

A more realistic case of the space-time metric is
treated in article [3], in the context of general relativ-
ity: all terms from the Earth gravitational potential are
considered up to an accuracy of 5.10−17, specifically in
prevision of the ACES mission [7].

4 Chronometric geodesy

Instead of using our knowledge of the Earth gravita-
tional field to predict frequency shifts between distant
clocks, one can revert the problem and ask if the mea-
surement of frequency shifts between distant clocks can
improve our knowledge of the gravitational field. To
do simple orders of magnitude estimates it is good to
have in mind some correspondences calculated thanks
to eqs. (21) and (22):

1 meter ↔ ∆ν

ν
∼ 10−16

↔ ∆w ∼ 10 m2.s−2 (23)

From this correspondence, we can already imagine two
direct applications of clocks in geodesy: if we are capable
to compare clocks to 10−16 accuracy, we can determine
height differences between clocks with one meter ac-
curacy (levelling), or determine geopotential differences
with 10 m2.s−2 accuracy.

4.1 A review of chronometric geodesy

e first article to explore seriously this possibility was
written in 1983 by Martin Vermeer [40]. e article
is named “chronometric levelling”. e term “chrono-
metric” seems well suited for qualifying the method of
using clocks to determine directly gravitational potential
differences, as “chronometry” is the science of the mea-
surement of time. However the term “levelling” seems
too restrictive with respect to all the applications one
could think of using the results of clock comparisons.
erefore we will use the term “chronometric geodesy”
to name the scientific discipline that deals with the mea-
surement and representation of the Earth, including its
gravitational field, with the help of atomic clocks. It is
sometimes named “clock-based geodesy”, or “relativistic
geodesy”. However this last designation is improper as
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relativistic geodesy aims at describing all possible tech-
niques (including e.g. gravimetry and gradiometry) in a
relativistic framework [18, 28, 35].

e natural arena of chronometric geodesy is the
four-dimensional space-time. At the lowest order, there
is proportionality between relative frequency shift mea-
surements – corrected from the first order Doppler ef-
fect – and (Newtonian) geopotential differences (see
eq.(22)). To calculate this relation we have seen that we
do not need the theory of general relativity, but only to
postulate Local Position Invariance. erefore, it is per-
fectly possible to use clock comparison measurements –
corrected from the first order Doppler effect – as a direct
measurement of geopotential differences in the frame-
work of classical geodesy, if the measurement accuracy
does not reach the magnitude of the higher order terms.

Comparisons between two clocks on the ground gen-
erally use a third clock in space. For the comparison
between a clock on the ground and one in space, the
terms of order c−3 in eqs. (19)-(20) reach a magnitude
of ∼ 10−15 and ∼ 3 × 10−14 for respectively the ground
and the space clock, if they are separated radially by
1000 km. Terms of order c−4 omitted in eqs. (21)-
(22) can reach ∼ 5 × 10−19 in relative frequency shift,
which corresponds to a height difference of ∼ 5 mm and
a geopotential difference of ∼ 5 × 10−2 m2.s−2. Clocks
are far from reaching this accuracy today, but it cannot
be excluded for the future.

In his article, Martin Vermeer explores the “possi-
bilities for technical realisation of a system for measur-
ing potential differences over intercontinental distances”
using clock comparisons [40]. e two main ingredi-
ents are of course accurate clocks and a mean to com-
pare them. He considers hydrogen maser clocks. For
the links he considers a 2-way satellite link over a geo-
stationary satellite, or GPS receivers in interferomet-
ric mode. He has also to consider a mean to compare
the proper frequencies of the different hydrogen maser
clocks. However today this can be overcome by com-
paring Primary Frequency Standards (PFS), which have
a well defined proper frequency based on a transition
of Caesium 133, used for the definition of the second.
However, this problem will rise again if one uses Sec-
ondary Frequency Standards which are not based on
Caesium atoms. en the proper frequency ratio be-
tween two different kinds of atomic clocks has to be
determined locally. is is one of the purpose of the
European project “International timescales with optical

clocks”⁴, where optical clocks based on different atoms
will be compared one each other locally, and to the
PFS. It is planned also to do a proof-of-principle ex-
periment of chronometric geodesy, by comparing two
optical clocks separated by a height difference of around
1 km using an optical fibre link.

In the foreseen applications of chronometric geodesy,
Martin Vermeer mentions briefly intercontinental level-
ling, and the measurement of the true geoid (disentan-
gled from geophysical sea surface effects) [40]. Few au-
thors have seriously considered chronometric geodesy.
Following Vermeer idea, Brumberg and Groten [5]
demonstrated the possibility of using GPS observations
to solve the problem of the determination of geoid
heights, however leaving aside the practical feasibility
of such a technique. Bondarescu et al. [4] discuss the
value and future applicability of chronometric geodesy,
including direct geoid mapping on continents and joint
gravity-geopotential surveying to invert for subsurface
density anomalies. ey find that a geoid perturbation
caused by a 1.5 km radius sphere with 20 per cent den-
sity anomaly buried at 2 km depth in the Earth’s crust is
already detectable by atomic clocks of achievable accu-
racy. Finally Chou et al. demonstrated the potentiality
of the new generation of atomic clocks, based on opti-
cal transitions, to measure heights with a resolution of
around 30 cm [9].

4.2 e chronometric geoid

Arne Bjerhammar in 1985 gives a precise definition of
the “relativistic geoid” [1, 2]:

“e relativistic geoid is the surface where
precise clocks run with the same speed and the
surface is nearest to mean sea level”

is is an operational definition. Soffel et al. [35] in
1988 translated this definition in the context of post-
Newtonian theory. ey also introduce a different op-
erational definition of the relativistic geoid, based on
gravimetric measurements: a surface orthogonal every-
where to the direction of the plumb-line and closest
to mean sea level. He calls the two surfaces obtained
with clocks and gravimetric measurements respectively
the “u-geoid” and the “a-geoid”. He proves that these
two surfaces coincide in the case of a stationary metric.
In order to distinguish the operational definition of the
geoid from its theoretical description, it is less ambigu-
ous to give a name based on the particular technique to

⁴http://projects.npl.co.uk/itoc/
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measure it. Relativistic geoid is too vague as Soffel et
al. have defined two different ones. e names chosen
by Soffel et al. are not particularly explicit, so instead of
“u-geoid” and “a-geoid” one can call them chronomet-
ric and gravimetric geoid respectively. ere can be no
confusion with the geoid derived from satellite measure-
ments, as this is a quasi-geoid that do not coincide with
the geoid on the continents [15]. Other considerations
on the chronometric geoid can be found in [18, 19, 28].

Let two clocks be at rest with respect to the chosen
coordinate system (vi = 0) in an arbitrary space-time.
From formula (9), (11) and (15) we deduce that:

νA

νB

=
dτB
dτA

=
[g00]

1/2
B

[g00]
1/2
A

(24)

In this case the chronometric geoid is defined by the
condition g00 = cst.

We notice that the problem of defining a reference
surface is closely related to the problem of realizing Ter-
restrial Time (TT). TT is defined with respect to Geo-
centric Coordinate Time (TCG) by the relation [36,
32]:

dTT
dTCG = 1 − LG (25)

where LG is a defining constant. is constant has been
chosen so that TT coincides with the time given by a
clock located on the classical geoid. It could be taken as
a formal definition of the chronometric geoid [43]. If
so, the chronometric geoid will differ in the future from
the classical geoid: a level surface of the geopotential
closest to the topographic mean sea level. Indeed, the
value of the potential on the geoid, W0, depends on the
global ocean level which changes with time [6]. With a
value of dW0/dt ∼ 10−3 m2.s−2.y−1, the difference in
relative frequency between the classical and the chrono-
metric geoid would be around 10−18 after 100 years (the
correspondence is made with the help of relations (23)).
However, the rate of change of the global ocean level
could change during the next decades. Predictions are
highly model dependant [17].

5 Conclusion

We presented recent developments in the field of atomic
clocks, as well as an introduction to relativistic fre-
quency transfer and a detailed review of chronometric
geodesy. If the control of systematic effects in optical

clocks keep their promises, they could become very sen-
sible to the gravitational field, which will ultimately de-
grade their stability at the surface of the Earth. One
solution will be to send very stable and accurate clocks
in space, which will become the reference against which
the Earth clocks would be compared. Moreover, by
sending at least four of these clocks in space, it will
be possible to realize a very stable and accurate four-
dimensional reference system in space [10].
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Abstract. In order to deliver a high accuracy
relativistic positioning system, several gravitational
perturbations need to be taken into account. We
therefore consider a system of satellites, such as
the Galileo system, in a space-time described by a
background Schwarzschild metric and small grav-
itational perturbations due to the Earth’s rotation,
multipoles and tides, and the gravity of the Moon,
the Sun, and planets. We present the status of this
work currently carried out in the ESA Slovenian
PECS project Relativistic Global Navigation Sys-
tem, give the explicit expressions for the perturbed
metric, and briefly outline further steps.

1 Introduction

Current Global Navigation Satellites Systems (GNSS),
such as the Global Positioning System and the Euro-
pean Galileo system, are based on Newtonian concept
of absolute time and space. e signals from four satel-
lites are needed for a receiver to determine its position

*Corresponding author. E-mail: andreja.gomboc@fmf.uni-lj.si

and time via the time difference between the emission
and the reception of the signal. However, due to the in-
ertial reference frames and curvature of the space-time
in the vicinity of Earth, space and time cannot be con-
sidered as absolute. In fact, general relativistic effects are
far from being negligible [2]. Current GNSS deal with
this problem by adding general relativistic corrections
to the level of the accuracy desired. An alternative, and
more consistent, approach is to abandon the concept of
absolute space and time and describe a GNSS directly in
general relativity, i.e. to define a Relativistic Positioning
System (RPS) with the so-called emission coordinates
[5, 16, 3, 4, 17]. A user of an RPS receives, at a given
moment, four signals from four different satellites. It
is able to determine the proper time τ of each satellite
at the moment of emission of these signals. en these
four proper times (τ1, τ2, τ3, τ4) constitute its emission
coordinates. By receiving them at subsequent times, the
receiver therefore knows its trajectory in the emission
coordinates.

ere are several advantages of an RPS. Firstly, the
emission coordinates are covariant quantities; they are
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independent of the observer (although dependent on the
set of satellites chosen and their trajectories). More-
over, if each satellite broadcasts its own and also receives
proper times of other satellites, the system of satellites
is autonomous and constitutes a primary reference sys-
tem, with no need to define a terrestrial reference frame.
erefore tracking of satellites with ground stations is
necessary only to link an RPS to a terrestrial frame, al-
though this link can also be obtained by placing several
receivers at the known terrestrial positions. ere is no
need to synchronize satellite clocks to a time-scale real-
ized on the ground (like it is done today with GPS time,
which is a realization of the TT Terrestrial Time). No
relativistic corrections are necessary, as relativity is al-
ready included in the definition of the positioning sys-
tem.

To demonstrate feasibility, stability and accuracy of
an RPS, two ESA Ariadna projects were carried out in
2010 and 2011 [6, 7, 8]. In these projects, the authors
modelled an RPS in the idealized case of Schwarzschild
geometry and found that relativistic description of a
satellite constellation with inter-satellite links provides
numerically accurate, stable and autonomous system.
ey called such a system the Autonomous Basis of Co-
ordinates (ABC). By communicating their proper times
solely, two satellites can determine their orbits (i.e., their
constants of motion). Any additional satellite would
serve to increase the system’s accuracy.

Outline of the PECS Relativistic GNSS project and its
goals

Continuation of this work is presently being carried out
in the ESA Slovenian PECS project Relativistic Global
Navigation System (2011-2014). In this project, we aim
to demonstrate that an RPS and the ABC concept are
highly accurate and stable also if the space-time is not
purely spherically symmetric, but contains small gravita-
tional perturbations due to the Earth’s multipoles, tides
and rotation and gravitational influences of the Moon,
the Sun, Jupiter and Venus. In this work we use the
same approach that was used in two Araidna projects
(description of satellites’ orbit in the ABC, emission co-
ordinates, inter-satellite communication and recovery of
their orbits) and add to a Hamiltonian gravitational per-
turbations.

In brief: we start modelling of an RPS by writing
the perturbed Hamiltonian, corresponding equations of
motion and calculating orbits of satellites. en we de-
fine the system based on the ABC with four satellites,

simulate their inter-satellite communication and use the
emission/reception of their proper times to determine
their orbital parameters. Our work is divided in the fol-
lowing steps:

1 Add first order gravitational perturbations to the
Schwarzschild metric: find perturbation coeffi-
cients describing all known gravitational perturba-
tions, i.e., due to Earth’s multipoles, tides and ro-
tation; gravity of the Moon, the Sun, and planets
(Venus and Jupiter).

2 Solve the perturbed geodesic equations: use
Hamiltonian formalism and perturbation theory to
obtain time evolution of zeroth order constants of
motion. Simulate satellites’ orbits.

3 Find accurate constants of motion: use solely inter-
satellite links over many orbital periods to deter-
mine satellites’ orbital parameters and study the
stability and possible degeneracies between them.

4 Refine values of gravitational perturbation coef-
ficients: use additional satellites and residual er-
rors between orbit prediction and orbit determina-
tion through inter-satellite communication to im-
prove the accuracy of position determination and to
probe the space-time, i.e., measure perturbations.
Discuss possible scientific applications.

Before starting detailed calculations it is useful to get
an estimation of the order of magnitude of various per-
turbations on a satellite orbit (as in e.g. [13, Fig. 3.1.]).
At GNSS altitudes of about 20.000 km above Earth,
the most important gravitational perturbations are due
to Earth’s multipoles, followed by the gravitational field
of the Moon and the Sun. Several orders of magnitude
smaller are perturbations due to Solar radiation pressure
and the Earth’s albedo (not considered in our project)
and due to Earth’s tides. About one order of magnitude
smaller are relativistic effects and the gravitational in-
fluence of Jupiter and Venus. Relativistic effects due to
Earth’s rotation are about an order of magnitude smaller
again.

Because our project is still in progress, we will present
here only the results of the first part of the project: we
will give the expressions for the perturbed metric around
Earth.
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2 Metric perturbations in the
Schwarzschild background

We describe the spherically symmetric and time in-
dependent background with the Schwarzschild metric
g
(0)
µν and denote metric perturbations with hµν. Be-

cause gravitational perturbations are several orders of
magnitude smaller than the Earth’s gravitational GM

term (hµν ≪ g
(0)
µν), we use linear perturbation theory

and write the perturbed metric as

gµν = g(0)
µν + hµν . (1)

Because we are interested in the space-time outside
Earth, the perturbed metric must satisfy the Einstein
equation for vacuum:

Rµν −
1
2
gµνR = 0 (2)

where
Rµν = R(0)

µν + δRµν (3)

is the Ricci tensor (symbol (0) denotes unperturbed
quantities and δ perturbations). e Einstein equation
becomes:

h α
α ;µν − h α

µ ;να − h α
ν ;µα + h α

µν; α

+ g(0)
µν(h

λ α
α ; λ − h λ α

λ ;α ) − hµνR
(0)

+ g(0)
µνhλσR

(0)λσ = 0

(4)

where a semi-colon (;) denotes covariant derivative, cal-
culated with respect to the unperturbed metric g(0)

µν.
To find solutions of these equations for vacuum we

use the Regge-Wheeler-Zerilli (RWZ) framework [15,
18] . In the RWZ formalism, the metric perturbation
hµν is expanded into a series of independent tensor har-
monics, a tensor analog to spherical harmonic functions,
labeled by indicesn (degree),m (order), and parity: odd
or even. By adopting the notation from [14], the gen-
eral expansion of the metric perturbation hµν can be
written as

hµν =

∞∑
n=2

n∑
m=−n

(hnm
µν )(o) + (hnm

µν )(e) , (5)

where the expansion terms (hnm
µν )(o) and (hnm

µν )(e) are
the odd-parity and the even-parity metric functions (or
modes), respectively. We find it most convenient to

work in the gauge from [15], where the odd parity met-
ric functions are

(hnm
µν )(o) =
0 0 −h0 csc θ∂φ h0 sinθ∂θ
0 0 −h1 csc θ∂φ h1 sinθ∂θ
⋆ ⋆ 0 0
⋆ ⋆ 0 0

 Ym
n ,

(6)

and for even parity, the metric functions are

(hnm
µν )(e) =
H0χ H1 0 0
⋆ H2χ

−1 0 0
0 0 r2K 0
0 0 0 r2K sin2 θ

Ym
n ,

(7)

where ⋆ indicates the symmetric part of the tensor, χ =
1−rs/r, and rs = 2GM/c2 is the Schwarzschild radius.
Expressionshi,Hi, andK depend on Schwarzschild co-
ordinates (t, r) and indices (n,m), which are omitted in
the expressions for clarity. It is shown in [15, 18] that in
vacuum H0 = H2, therefore, both functions are marked
with H.

After inserting (6) and (7) into (4), we obtain a
number of partial differential equations. We find and
write their solutions for time-independent and time-
dependent perturbations, separately.

2.1 Time-independent metric perturbations

Even-parity contributions

In the case of time-independent perturbations of even
parityH1 = 0 [15]. It follows that the evenmetricmode
(7) is diagonal:

(hnm
µν )(e) =

diag(Hχ,Hχ−1, r2K, r2K sin2 θ)Ym
n

. (8)

Inserting it in (4) gives equations for H and K. We find
the solution for H to be:

H(r) = Anm

P
(0)
n

(
rs
r

)
rn(r− rs)

+ Bnm

rn+1R
(0)
n

(
rs
r

)
r− rs

, (9)

where the functions P(0)
n and R

(0)
n are Gaussian hyper-

geometric functions 2F1 [1] (for more details see[11]).
e solution for function K is determined by H (see

[11]) and can be written as

K(r) = Anm

P
(1)
n

(
rs
r

)
rn+1 + BnmrnR(1)

n

(rs

r

)
, (10)
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where functions P(1)
n and R

(1)
n can be expressed via P(0)

n

and R
(0)
n [11].

In our case of satellites in orbit around Earth, time-
independent perturbations are due to the Earth’s multi-
poles (for the time being, we neglect Earth’s rotation and
tides). In order to determine the constants Anm and
Bnm in (9) and (10), we compare equation (9) with its
Newtonian counterpart, i.e., the gravitational potential
Φ. For a non-rotating object of massM the potentialΦ
can be expanded into a series of multipole contributions
(eq. 3.61 in [12]):

Φ =
GM

r

+
∑
nm

(M⊕
nmr−n−1 +M⊖

nmrn)Ym
n ,

(11)

where M⊕
nm and M⊖

nm are time-independent spher-
ical multipole momenta and notation

∑
nm ≡∑∞

n=2
∑n

m=−n is used. e first term in the sum
describes the gravitational potential of the perturbing
sources positioned within the radius r, while the sec-
ond term corresponds to those outside r. Comparing
(9) with (11), we notice the same behavior (i.e., the su-
perposition of r+n and r−n−1 functional dependence)
in the perturbative part of (11) and it is evident that the
coefficients Anm and Bnm are related to the multipole
momenta. e relation between both is found from the
weak field approximation

c2

2
(1 + g00) ∼ Φ . (12)

By inserting

g00 = g
(0)
00 +

∑
nm

(hnm
00 )(e)

= χ

(
−1 +

∑
nm

Hnm

) (13)

into the above relation together with the Newtonian po-
tential (11), we find that in the weak field limitAnm and
Bnm are asymptotically related to Newtonian spherical
multipole momenta M⊕

nm and M⊖
nm as

Anm ∼
2
c2 M

⊕
nm and Bnm ∼

2
c2 M

⊖
nm . (14)

Note that for finite c, M⊕
nm and M⊖

nm only approxi-
mate Anm and Bnm.

Odd-parity contributions

In case of time-independent perturbations, the odd
metric functions (hnm

µν )(o) in (6) have h1 = 0 [15] and
can be written with a single function h0 as

(hnm
µν )(o) =− h0 csc θYm

n ,φ(δ0,µδ2,ν + δ2,µδ0,ν)

+ h0 sin θYm
n ,θ(δ0,µδ3,ν + δ3,µδ0,ν) .

(15)

e solution for h0 is:

h0(r) = αnm

P
(2)
n

(
rs
r

)
rn

+ βnmrn+1R(2)
n

(rs

r

)
, (16)

where functions P(2)
n and R

(2)
n are Gaussian hypergeo-

metric functions 2F1 (for more details see[11]).
To determine the constants αnm and βnm we note

that off-diagonal terms in the metric tensor are associ-
ated with frame-dragging effects. In our case frame-
dragging effects from ’external’ objects (the Sun, the
Moon, other planets) are negligible. Consequently, we
set βnm = 0.

We do take into account the frame-dragging due to
the Earth’s rotation. To determine αnm, we notice that
for n = 1 andm = 0 the corresponding h0 matches the
weak field and slow rotation approximation of the Kerr
metric: if r ≫ rs and Earth’s angular parameter a ≪ 1,
then for α10 = ars

√
4π/3 it follows

h0(r) = a
rs

r

√
4π
3

, (17)

where we keep only the terms linear in a.
For higher multipoles (n > 1), it turns out that their

dependence on a is not linear [10]. erefore, the only
multipole we include in the odd-parity metric function
is the monopole, i.e., the one belonging to the linear (in
a) part of the Kerr effect.

2.2 Time-dependent metric perturbations

Due to the Earth’s rotation its multipoles vary periodi-
cally. Earth’s solid and ocean tides introduce additional
time dependency in its multipoles (additional variability
with different frequency, phase and varying amplitude,
depending on the position of the Moon and the Sun).
In addition, the gravitational influence of other celes-
tial bodies introduces time dependent perturbations to
the space-time around Earth, because their relative po-
sitions with respect to Earth change with time. ese
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perturbations can be expanded in a series of multipoles
and treated with the same procedure as the Earth’s mul-
tipoles.

We therefore consider time dependent metric pertur-
bations for the case of perturbations oscillating slowly
with angular velocities, which are smaller or of the same
order of magnitude as the angular velocity of Earth.
All angular velocities are defined with respect to the
Schwarzschild time t.

Even-parity contributions

Even parity modes are connected to the Newtonian
gravitational potential Φ, which in the case of time de-
pendent multipoles can be written as:

Φ =
GM

r

+
∑
nm

(M⊕
nm(T)r−n−1 +M⊖

nm(T)rn)Ym
n ,

(18)

where T = ct, or alternatively in frequency domain:

Φ =
GM

r
+
∑
nm

∫∞
−∞ dk eikT×[

M̃⊕
nm(k)r−n−1 + M̃⊖

nm(k)rn
]
Ym
n ,

(19)

where k is the wavenumber and M̃⊕
nm, M̃⊖

nm are the
Fourier transforms of time dependent multipoles:

M̃u
nm(k) =

1
2π

∫∞
−∞ dT e−ikTMu

nm(T) , (20)

where u = ⊕,⊖.
Each time dependent multipole generates a time-

dependent even metric perturbation (hnm
µν )(e). Func-

tions H, H1, and K determining the modes can be ex-
pressed with their Fourier transforms as

(H(T),H1(T),K(T)) =∫∞
−∞ dk eikT (H̃(k), H̃1(k), K̃(k))

(21)

Because in our case k is very small (k ≪ 1/r), we
solve differential equations for H, H1, and K perturba-
tivelly in k. We assume that H̃, H̃1, and K̃ are smooth
functions of k and write them as a power series of di-
mensionless κ = krs:

(H̃, H̃1, K̃) ∼
∞∑
i=0

κ2i(H̃(i), iκH̃(i)
1 , K̃(i)) , (22)

e first terms in the expressions forH andK are already
known: H̃(0) is given in (9) and K̃(0) in (10), where in-
stead of (14) we use:

Anm ∼
2
c2 M̃

⊕
nm and Bnm ∼

2
c2 M̃

⊖
nm . (23)

For H̃1 we find that

H̃
(0)
1 (r) = Anm

r−n+1P
(3)
n

(
rs
r

)
rs(r− rs)

+ Bnm

rn+2R
(3)
n

(
rs
r

)
rs(r− rs)

,

(24)

where functions P(3)
n and R

(3)
n are given as a series in rs

r

[11].
Because k is very small for all time-dependent per-

turbations considered, we neglect all higher than lead-
ing terms in the expansion (22) and use the following
approximations:

H(T , r) ≈
∫∞
−∞ dk eikT H̃(0)(k, r) , (25)

H1(T , r) ≈
∫∞
−∞ dk ikrse

ikT H̃
(0)
1 (k, r) , (26)

K(T , r) ≈
∫∞
−∞ dk eikT K̃(0)(k, r) . (27)

A metric perturbation expressed with these functions
is accurate up to the linear order in frequency. Since
higher order perturbations naturally give rise to contri-
butions with higher orders of frequencies, our approxi-
mation of a perturbation is consistently linear, i.e., it is
linear in frequencies and in the order of perturbation.

Odd-parity contributions

For odd-parity solutions we use the same notation as in
(21) and we find that the asymptotic behaviour of solu-
tions h̃0 and h̃1 is not flat:

h̃1(r) ≍ r sin(kr+ ϕ) (28)
h̃0(r) ≍ r cos(kr+ ϕ) (29)

ese solutions are therefore not relevant in our case.

3 Metric around Earth

Finally, we can write the metric perturbation hµν,
which in (5) was expressed as a series of normal modes
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(hnm
µν )(o) and (hnm

µν )(e). Based on the positions of the
sources of perturbations, these modes can be grouped
into two terms:

hµν = h⊕
µν + h⊖

µν . (30)

e term h⊕
µν represents the Earth’s time dependent

(exterior) multipoles and the frame-dragging effect of
Earth. e former arise from the shape of the Earth,
which changes with time due to rotation and tidal forces.
For the latter, Kerr effect, there is no non-relativistic
counterpart.

e term h⊖
µν represents the time dependent (in-

terior) multipoles of other celestial bodies. is term
arises from the perturbative effect of other planets, the
Moon, and the Sun, whose positions relative to Earth’s
change with time. eir frame-dragging effect is ne-
glected.

To simplify expressions, we introduce the normalized
complex multipoles (u = ⊕,⊖):

M
u

nm :=
2
c2 M

u
nm . (31)

Metric perturbation due to Earth’s multipoles and ro-
tation can be written as

[h⊕
µν] =

∑
nm

M
⊕
nmYm

n ×

diag

(
P
(0)
n

rn+1 ,
P
(0)
n

rn−1(r− rs)2 ,
P
(1)
n

rn−1 ,
P
(1)
n sin2 θ

rn−1

)

+
∑
nm

M
⊕
nm,TY

m
n

P
(3)
n

rn−1(r− rs)
(δµ,1δν,0 + δν,1δµ,0)

− a⊕
rs

r
sin2 θ(δµ,3δν,0 + δν,3δµ,0) ,

(32)

where Earth’s multipoles M
⊕
nm are functions of time

and include rotation, ocean and solid tides; and M
⊕
nm,T

are their time derivatives.
Metric perturbations due to other celestial bodies are

[h⊖
µν] =

∑
nm

M
⊖
nmYm

n ×

diag

(
rnR(0)

n ,
rn+2R

(0)
n

(r− rs)2 , rn+2R(1)
n , rn+2R(1)

n sin2 θ

)

+
∑
nm

M
⊖
nm,TY

m
n

rn+2R(3)

r− rs
(δµ,1δν,0 + δν,1δµ,0) ,

(33)

where M
⊖
nm are summed multipoles of other celestial

bodies (in our case the Sun, the Moon, Jupiter and
Venus).

e first order approximations of the metric pertur-
bations given by (32) and (33) are fully determined by
multipole momenta M

⊕
nm, M⊖

nm, Kerr parameter a,
and functions P(i)

n and R
(i)
n (for details see [11]).

4 Conclusions

e aim of our project is to model the Galileo GNSS
in general relativity including all relevant gravitational
perturbations and to test to what level can this new ap-
proach improve the accuracy and stability of the Galileo
GNSS reference frame.

In this contribution, we show how we can include
gravitational perturbations with linear perturbation the-
ory on a Schwarzschild background and present explicit
expressions (32) and (33) for the perturbative metric.

In the next steps, we will use this metric in the per-
turbative Hamiltonian formalism to obtain time deriva-
tives of zeroth order constants of motion. With the
derivatives known, we will be able to determine the time
evolution of these slowly changing constants of motion
and apply them to analytical solutions for Schwarzschild
geodesics to obtain satellites’ orbits in perturbed space-
time. Once the orbits are known, we can use them to
do the relativistic positioning, as well as build the ABC
in the perturbed space-time around Earth, using only
inter-link communication between GNSS satellites.

Acknowledgements

AG, MH and UK acknowledge the financial support by
ESA Slovenian PECS project Relativistic Global Navi-
gation System.

References

[1] M. Abramowitz and I. A. Stegun. Handbook of
Mathematical Functions. Dover, New York, fifth
edition, 1964.

[2] N. Ashby. Relativity in the global positioning sys-
tem. Living Reviews in Relativity, 6(1):43, 2003.

[3] M. Blagojević, J. Garecki, F. W. Hehl, and Y. N.
Obukhov. Real null coframes in general rela-
tivity and GPS type coordinates. Phys. Rev. D,
65(4):044018–+, Feb. 2002.

84 DOI: 10.2420/AF07.2013.79



Relativistic Positioning Systems and Gravitational Perturbations

[4] B. Coll. A principal positioning system for the
Earth. In N. Capitaine and M. Stavinschi, ed-
itors, Journées 2002 - systèmes de référence spatio-
temporels. Astrometry from ground and from space,
Bucharest, 25 - 28 September 2002, edited byN.Cap-
itaine and M. Stavinschi, Bucharest: Astronomical
Institute of the Romanian Academy, Paris: Obser-
vato, volume 14, pages 34–38, 2003.

[5] B. Coll and J. A. Morales. Symmetric frames on
Lorentzian spaces. Journal ofMathematical Physics,
32(9):2450, 1991.

[6] A. Čadež, U. Kostić, and P. Delva. Mapping the
spacetime metric with a global navigation satellite
system, european space agency, the advanced con-
cepts team, ariadna final report (09/1301). Tech-
nical report, European Space Agency, 2010.

[7] A. Čadež, U. Kostić, and P. Delva. Mapping the
spacetime metric with a global navigation satel-
lite system-extension study: Recovery of orbital
constants using intersatellite links, european space
agency, the advanced concepts team, ariadna final
report (09/1301 ccn). Technical report, European
Space Agency, 2011.

[8] P. Delva, U. Kostić, and A. Čadež. Numerical
modeling of a Global Navigation Satellite System
in a general relativistic framework. Advances in
Space Research, 47:370–379, Jan. 2011.

[9] V. Gurzadyan, J. Makino, M. J. Rees, G. Meylan,
R. Ruffini, and J. A. Wheeler. Black Holes, Grav-
itational Waves and Cosmology. Advances in As-
tronomy and Astrophysics Series. Cambridge Sci-
entific Publishers Limited, 2005.

[10] J. B. Hartle. Slowly Rotating Relativistic Stars.
I. Equations of Structure. Astrophysical Journal,
150:1005, Dec. 1967.

[11] M. Horvat, U. Kostić, and A. Gomboc. Per-
turbing the Schwarzschild metric with Newtonian
multipoles. submitted, 2013.

[12] J. D. Jackson. Classical Electrodynamics ird Edi-
tion. Wiley, third edition, Aug. 1998.

[13] O. Montenbruck and E. Gill. Satellite Orbits:
Models, Methods, Applications. Springer Verlag,
2005.

[14] A. Nagar and L. Rezzolla. Gauge-invariant non-
spherical metric perturbations of Schwarzschild
black-hole spacetimes. Classical and Quantum
Gravity, 22(16):R167, 2005.

[15] T. Regge and J. A. Wheeler. Stability
of a Schwarzschild Singularity. Phys. Rev.,
108:1063–1069, Nov 1957.

[16] C. Rovelli. GPS observables in general relativity.
Phys. Rev. D, 65(4):044017, Feb. 2002.

[17] A. Tarantola, L. Klimes, J. M. Pozo, and B. Coll.
Gravimetry, Relativity, and the Global Navigation
Satellite Systems. ArXiv e-prints, 2009:35, 5 2009.

[18] F. J. Zerilli. Gravitational Field of a Particle
Falling in a Schwarzschild Geometry Analyzed in
Tensor Harmonics. Phys. Rev. D, 2:2141–2160,
Nov 1970. See erratum by Zerilli in Appendix A-
7 of [9].

DOI: 10.2420/AF07.2013.79 85



86



Acta Futura 7 (2013) 87-96
DOI: 10.2420/AF07.2013.87

Acta
Futura

Preliminary study for the measurement of the Lense-irring
effect with the Galileo satellites

B M M, R K*, G M,
GFZ German Research Center for Geosciences, Germany

I C,
Dipartimento di Ingegneria dell ’Innovazione, Universitá del Salento, Italy

A P,  G S
Scuola di Ingegneria Aerospaziale and DIAEE, Sapienza Universitá di Roma, Italy

Abstract. e precession of the orbital node of a
particle orbiting a rotatingmass is known as Lense-
irring effect (LTE) and is a manifestation of the
general relativistic phenomenon of dragging of in-
ertial frames or frame-dragging. e LTE has al-
ready been measured by using the node drifts of
the LAGEOS satellites and GRACE-based Earth
gravity field models with an accuracy of about 10%
and will be improved down to a few percent with
the recent LARES experiment. e Galileo system
will provide 27 new node observables for the LTE
estimation and their combination with the LA-
GEOS and LARES satellites can potentially re-
duce evenmore the error due to themismodeling in
Earth’s gravity field. However, the accurate deter-
mination of the Galileo orbits requires the estima-
tion of many different parameters, which can ab-
sorb the LTE on the orbital nodes. Moreover, the
accuracy of the Galileo orbits and hence, of their
node drifts, is mainly limited by the mismodeling
in the Solar Radiation Pressure (SRP). Using sim-
ulated data we analyze the effects of the mismod-
eling in the SRP on the Galileo nodes and propose
optimal orbit parameterizations for the measure-
ment of the LTE from the future Galileo observa-

*Corresponding author. E-mail: rolf.koenig@gfz-potsdam.de

tions.

1 Introduction

In 1918, Lense and irring [9] proved that a particle
orbiting around a central body endowed with an angular
momentum J experiences a nodal precession Ω̇ accord-
ing to the expression

Ω̇ =
2GJ

c2a3(1 − e2)3/2 (1)

where a and e are the orbital semimajor axis and ec-
centricity, G is the gravitational constant and c is the
speed of light.

One of the main error sources in the estimation of
the Lense-irring effect (LTE) by using the nodes of
an Earth satellite arises from the uncertainties in the
Earth’s gravity field model. In particular, the largest er-
rors proceed from uncertainties in the first even zonal
harmonics of a spherical expansion of the Earth poten-
tial, i. e., J2, J4, J6, ..., and their variations in time.

e combination of two node observables in or-
der to remove the influence of the first even zonal
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harmonic, J2, on the node drift was first proposed
in [2]. en, the two laser-ranged LAGEOS satellites
and the high-accurate Earth gravity field models based
on GRACE observations (f. i., EIGEN-GRACE02S,
EIGEN-GRACE03S, JEM03G), have provided for
the measurement of the LTE with an accuracy of about
10% [3]. e combination with the new LARES satel-
lite [12] will allow to eliminate the uncertainties due to
both, J2 and J4, thus being possible to obtain a mea-
surement of the LTE with an accuracy of the order of
1% [3].

e Galileo system will provide a new node observ-
able from a total of 27 satellites, whose combination
with the LAGEOS and LARES satellites will poten-
tially reduce the uncertainty due to the mismodeling
in the Earth gravity field. However, there are two is-
sues that greatly impact the LTE measurement with the
Galileo satellites. e first of those is that the accu-
rate determination of the Galileo orbits and their node
drift requires the estimation of many different param-
eters, such as initial state vectors, empirical accelera-
tions, clock offsets, station coordinates, etc, which can
absorb partially or completely the LTE.e second issue
is that the final accuracy of the estimated Galileo orbits
is mainly limited by the mismodeling in the Solar Ra-
diation Pressure (SRP), which constitutes the primary
error source in the determination of the LTE with the
Galileo nodes.

In the present work, the effects of both, the mismod-
eling in the SRP and the orbit parameterization, on the
Galileo node drift determination are analyzed by means
of simulated Galileo orbits and observations.

2 Simulation of Galileo orbits and
observations

A set of Galileo orbits and observations corresponding
to days 1-4 of January, 2008 are simulated and used in a
series of different numerical tests. In the simulation, the
EPOS-OC software (Earth Parameter and Orbit Sys-
tem– Orbit Computation [16]) is used.

e Galileo orbits are simulated according to the
specifications given by ESA [5], a Walker 27/3/1 con-
figuration with a semi-major axis of 29600 km, an incli-
nation of 56 deg, zero eccentricity, a separation between
planes equal to 120 deg and a change of mean anomaly
for equivalent satellites in neighbouring planes of 13.3
deg. e main physical background models used in the
simulations are presented in Table 1. e correspond-

ing datasets of Galileo code and phase observations for
a global network of 80 stations are obtained. In the data
simulation and in the subsequent orbit recovery, iden-
tical background models are used and hence, the errors
due to uncertainties in these models are not addressed
in this work.

In EPOS-OC the SRP acceleration r̈ is computed by
means of the expression

r̈ =

(
A

R

)2 1
m

Frad
R
R

(2)

where A represents the Astronomical Unit (AU)
in meters, m is the satellite mass, R is the helio-
centric vector pointing out to the satellite with mod-
ule R and Frad is the direct pressure force computed
by means of a model. For the time being, the SRP
models implemented in EPOS-OC are the ROCK4
model [6] for GPS-type satellites and the cannon ball
or macro models dedicated to specific non-GPS satel-
lites (f. i., [10]). In our simulations the Galileo satel-
lites were considered to be GPS-Block-II-like satellites
and thus, the ROCK4 model was applied. e ROCK4
model is recommended by the IERS conventions [11]
for the modeling of the SRP effect. It includes the di-
mensions and optical properties of the GPS spacecraft
surfaces.

Gravity field EIGEN-6C 12 x 12
[7]

Earth tide IERS Conv. [14]
Ocean tide EOT11a [15]
Atmospheric tide Biancale-Bode [1]
Lunisolar and planetary JPL DE421 [8]
perturbations
Ocean pole tide Desai [4]
Earth Orientation EOP08C04
Parameters
Nutation and precession IERS Conv. [14]
Earth albedo Analytic model

by Heurtel

T . Physical background models used in the simulation of the
Galileo orbits and observations

In order to account for deficiencies in the SRP model,
the Eq. (2) is multiplied by a global scaling factor (F0
hereafter) and different parameters can also be added,
like global biases in the X, Y and Z directions in a satel-
lite body-fixed reference system. e influence of the
Earth’s and Moon’s shadow is also considered.
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e creation of a more accurate SRP model for
Galileo will require the knowledge of the vehicles char-
acteristics in terms of shape, size, weight and surface op-
tical properties. en, a macro model could be adopted
for the Galileo SRP computation, along with an ap-
propriate attitude model which also accounts for the
yaw turns during satellite midnights (shadow turns) and
noons. As of today, little information has been pub-
lished about the characteristics of the Galileo satellites.
Some general features taken from [5] are compiled in
Table 2.

Bus dimensions 2.7 x 1.1 x 1.2 m3

Solar array span 13 m
Mass 700 Kg

T . Galileo satellite features

3 Optimal parameterizations for the LTE
estimation

According to Eq. (1), the nodal precession of theGalileo
satellites due to the LTE is 1.7 · 10−9 deg/d. is node
drift holds for all 27 Galileo satellites of the full con-
stellation. Figure 1 shows the comparison of two sets
of simulated orbits over a period of 26 h generated with
and without modeling of the LTE.

F . Orbital node differences (deg) between two sets of sim-
ulated Galileo orbits with and without LTE.

To measure the LTE from Galileo observations the
nodal drift due to the LTE must be present in the node
positions estimated in a precise orbit determination pro-
cess where the LTE is not modeled. is means that the
estimated node positions without LTE modeling must
differ from the true node positions and this difference

must not be absorbed by the estimated parameters. In
order to find out under which circumstances this holds,
a set of 26 h of Galileo orbits and noise-free code and
phase observations are simulated including the model-
ing of the LTE. en, the simulated observations are
used to recover the Galileo orbits without modeling the
LTE, thereby estimating the following parameters:

- Initial orbital elements for each satellite (position
and velocity)

- Empirical accelerations in the along-track and nor-
mal directions (4 coefficients per arc)

- SRP F0, Y- and Z-bias

- Earth’s albedo scaling factor

- Station coordinates

- Tropospheric delays (10 per satellite-station pair)

- Phase ambiguities

- Clock offsets

e estimated (without LTE) and simulated (with
LTE) node positions are compared and the differences
analyzed in order to identify the parameters absorb-
ing the LTE. An optimal parameterization for the LTE
measurement must allow to observe the node drift when
comparing the estimated and simulated orbits.

It was found that the free estimation of the station co-
ordinates introduces large errors in the node positions
of the order of 10−8 deg and, as a consequence, the
station coordinates must be either fixed or highly con-
strained, what can be done by imposing a set of No-
Net-Translation-Rotation-Scale (NNTRS) conditions
on the whole ground network. In addition, the esti-
mation of empirical accelerations in the normal direc-
tion to the orbital plane absorbs part of the LTE and
consequently, their estimation must be avoided, with
a concurrent loss in orbit recovery accuracy. Provided
that these two conditions are fulfilled the LT signal is
observed in the differences between the estimated and
simulated nodes positions, like in Fig. 2 (a). A linear
regression of the node position differences provides an
estimate of the LTE drift of approximately 1.5 · 10−9

deg/d, close to the expected value, 1.7·10−9 deg/d, with
a standard deviation of 3 ·10−12 deg/d and a small post-
regression RMS of 9 · 10−11 deg. In conclusion, this
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F . Orbital node differences (deg) between estimated (without LTE) and simulated (with LTE) Galileo orbits when (a) station
coordinates are constrained with NNTRS conditions and the empirical accelerations in the orbit normal direction are fixed (optimal
parameterization), (b) the X-bias is additionally estimated and (c) the optimal parameterization is applied to noisy observations.

parameterization seems to be optimal for the LTE es-
timation from 1-day Galileo arcs in the sense that the
LTE is not absorbed by the estimated parameters.

An additional test has been performed by estimating
another parameter of the SRP model, the X-bias, in ad-
dition to F0, Y- and Z-bias. e differences in the node
positions are presented in Fig. 2 (b). In this case the LT
signal has been absorbed for some satellites and hence,
the estimation of the SRP X-bias must be avoided. is
can be safely done, since the estimation of the X-bias
does not introduce a significant improvement in the ac-
curacy of the recovered orbit and therefore is usually dis-
missed.

e results obtained when applying the optimal
parameterization to noisy observations are also ana-
lyzed. For this purpose, a Gaussian noise has been intro-
duced to the simulated observations with standard devi-
ations of 50 cm for code and 3mm for phase ranges. e
differences between estimated and simulated node posi-

tions are shown in Fig. 2 (c). In this case, the node drifts
due to the LTE is hidden behind the large noise. In fact,
the RMS of the node differences is about 2.7 ·10−9 deg,
quite larger than the expected node displacement from
the LTE for 1 day, i. e., 1.7 · 10−9 deg/d. erefore, in
order to obtain a more precise estimation of the LTE,
longer arcs shall be used, f. i. with 3-day arcs the LTE
amounts to 5.1·10−9 deg/d, which is significantly larger
than the noise mentioned before.

us, for the next tests, 3-day Galileo orbits and
noise-free observations are simulated with modeling of
the LTE. en, the Galileo orbits are estimated with-
out modeling the LTE from the observations by ap-
plying the optimal parameterization for 1-day arcs. e
same number of empirical coefficients are estimated for
the 3-day arcs as for the 1-day arcs. e differences be-
tween the estimated and simulated node positions are
presented in Fig. 3 (a), where it can be observed that the
LT signal is absorbed for some satellites and hence, the
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F . Orbital node differences (deg) between estimated (without LTE) and simulated (with LTE) 3-day Galileo orbits when (a)
the optimal parameterization for 1-day arcs is applied, (b) the Earth albedo is additionally fixed (optimal parameterization for 3-day
arcs) and (c) the optimal parameterization for 3-day arcs is applied to noisy observations.

optimal parameterization for 1-day arcs is not suitable
for 3-day arcs.

e parameters absorbing the LTE are identified as
the SRP Y-bias and the Earth’s albedo scaling fac-
tor. Fixing either of them results in a perfect recovery
of the LTE, as shown in Fig. 3 (b). Nevertheless, fixing
the Y-bias to an incorrect value would introduce large
errors in the node positions and has to be avoided. On
the contrary, the influence of Earth’s albedo on the
Galileo orbits is very small and therefore can safely be
neglected. Consequently, the optimal parameterization
for 3-day arcs coincides with that for 1-day arcs with
the exception of the Earth’s albedo scaling factor, which
must be fixed for the 3-day arcs.

Finally, the optimal parameterization for 3-day arcs is
applied to noisy observations, the differences in the node
positions are in Fig. 3 (c). e linear regression provides
a trend of 1.7 · 10−9 deg/d, with an RMS of 1.0 · 10−9

deg, 5 times smaller than the total displacement of the

Galileo nodes due to the LTE after 3 days. In conclu-
sion, the 3-day arcs in combination with the optimal pa-
rameterization proposed here seem suitable for the pre-
cise measurement of the LTE from noisy Galileo obser-
vations in absence of other modeling errors. en, using
real Galileo observations and estimated orbits, the LTE
will bemeasured as the difference between the estimated
node positions in the overlap of two consecutive Galileo
orbital arcs. Assuming a precision of the estimated node
positions at the level of the RMS, this is 1.0·10−9 deg for
3-day arcs, the combination of 27 node observables to
compute the difference in the overlap yields a precision
of 1.0 · 10−9 ·

√
2/

√
27 = 0.27 · 10−9 deg for the LTE

estimation. us, a precision of about 5% of the LTE
would be reached with two 3-dayGalileo arcs. Similarly,
the average of LTE estimations obtained in a series of n
overlaps increases the precision by a factor 1/

√
n. us,

in order to achieve a precision in the LTE estimation
of 1%, a minimum of 30 Galileo 3-day arcs need to be
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F . Orbital node differences (deg) between estimated 3-day
GPS orbits with and without modeling the LTEwhen the optimal
parameterization is applied.

processed.
e optimal parameterization has been verified with

real GPS data through the estimation of a 3-day GPS
orbit in two different cases: with and without modeling
of the LTE. e differences in the node positions be-
tween the two sets of estimated orbits are in Fig. 4 and
show a drift of the GPS nodes of about 2.1 ·10−9 deg/d,
close to the theoretical value of 2.3 · 10−9 deg/d. is
means that this optimal parameterization allows to ob-
serve the LTE in the GPS nodes provided that there
are no errors in the background models and the nodes
are accurately estimated to the few 10−9 deg level. is
however is difficult to achieve mainly due to SRP mod-
eling errors.

4 Effects of the SRP on the Galileo nodes

In this section we analyze the effects of the SRP on
the Galileo nodes and the errors in the estimated nodes
due to mismodeling of SRP. For that purpose, a set of
Galileo orbits is simulated by including various param-
eters of the SRP model, then they are compared to a
set simulated without SRP model. In first place a set
of Galileo orbits with F0 equal to 1 and X-, Y- and
Z-biases equal to 0 is tested. e effect is shown in
Fig. 5 (a). A periodical displacement of the node is ob-
served with an amplitude of up to 3 ·10−5 deg and a pe-
riod equal to a complete revolution of the Galileo satel-
lites. Moreover the SRP introduces a drift of 7 · 10−9

deg/d, about twice the level of the LTE.
e effects due to the presence of the X-, Y- and

Z-bias (all simulated with magnitude 10−10 m/s2) are
shown in Figs. 5 (b), (c) and (d) respectively. It can

be observed that the X- and Y-bias yield a signifi-
cant trend of up to 6 · 10−8 deg/d and up to 1 · 10−7

deg/d respectively, in both cases depending on the or-
bital planes. Conversely, the Z-bias produces a peri-
odical displacement of the node with an amplitude of
2.5 · 10−8 deg and a period of one revolution. e re-
sulting node drift due to the Z-bias is 5 · 10−12 deg/d
only. In summary, the SRP parameters must be han-
dled carefully, since they can introduce large errors in
the node thus easily masking the sought for LTE.

As a next step, the error in the estimated nodes due
to the mismodeling in the SRP is analyzed in two dif-
ferent cases. In the first case 1 day of Galileo orbits
and observations are simulated with F0 = 1 and the or-
bits are recovered from the observations by fixing F0 =
1.2. is represents a deliberate error of 20% of the full
SRP model coming from a mismodeling in the satellite
area, mass, surface properties, etc. In GPS orbit deter-
mination F0 varies periodically ranging from 0.5 to 1.5
or even more and hence, an error of 20% seems realis-
tic. No X-, Y- and Z-biases are considered in this first
case and the optimal parameterization for 1-day arcs is
used in the recovery. Like in the previous tests the LTE
is introduced in the data simulation but it is not mod-
elled in the recovery of the orbits. e differences in the
node between estimated and simulated orbits are pre-
sented in Fig. 6 (a). A periodical error with a magnitude
of up to 1 · 10−7 deg is clearly observed, the node drift
due to the LTE is not visible. As a consequence, the
global scaling factor of the SRP model shall not be fixed
or highly constrained, but rather estimated. e estima-
tion of F0 absorbs the deficiencies in the SRPmodel and
does not affect the measurement of the LTE, as shown
in Section 3.

In a second case, the Galileo orbits and observations
are simulated by including Y- and Z-biases in the SRP
model and an increasing F0 from the beginning to the
end of the arc, according to the values given in Ta-
ble 3. ese values are realistic since they are obtained
from the determination of GPS orbits. In the subse-
quent estimation of the Galileo orbits, F0 is fixed to 1
and the Y- and Z-biases are fixed to 0. e differences
between estimated and simulated nodes are shown in
Fig. 6 (b).is time, the errors observed in the estimated
nodes reach more than 1 · 10−7 deg mainly due to the
mismodeling of the Y- and Z-bias, the LT node drift
is not visible. us, the Y- and Z-bias of the SRP shall
not be fixed but rather estimated since fixing them to
incorrect values introduces errors in the node position
two orders of magnitude larger than the LTE.
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F . Effect of the SRP on the Galileo nodes of simulated orbits (deg) when the following parameters are considered: (a) F0 only,
(b) X-bias only, (c) Y-bias only and (d) Z-bias only.

parameter value
F0 0.999 - 1.001

(total variation = 0.002)
Y-bias -0.59600E-10
Z-bias -0.13400E-07

T . SRP parameters as obtained from GPS orbit determi-
nation and used in the simulations

Finally, to analyze the effects of the SRP depending
on the satellite surface properties, a test is performed by
using a macro model for the Galileo satellites. A macro
model (sometimes also called box-wing model in the lit-
erature) takes into account the size and reflection prop-
erties of each surface of the satellite.eGalileo attitude
model is neglected here. It must be stressed however,
that the attitude model is critical for the computation of
the SRP effects on the Galileo orbits, since their panels
are continuously reoriented to face the Sun. us, the
results obtained here are a simplification of the real be-

haviour of the Galileo nodes.
According to different illustrations of the Galileo

satellites (e. g. [5] or [13]), two different sets of param-
eters are set up, corresponding to two different satel-
lite coatings, a gold coating and a silver (similar to alu-
minium) coating. e parameters of the macro mod-
els used are summarized in Table 4. It can be noted
that the differences of the coefficients due to the choice
of the coating amounts to 25% already. is will di-
rectly transfer into the SRP modeling and corresponds
roughly with the uncertainties of the SRP model used
in the above. e effect on the nodes due to the choice
between the two different coatings can be observed in
Fig. 7. e node differences are tremendous reaching
2.8 · 10−7 deg peak to peak. In the end however, in
Galileo orbits estimation the error due to a wrong choice
of the surface coating will be reduced by the estimation
of certain SRP parameters.

In conclusion, the measurement of the LTE with the
Galileo nodes requires an accurate SRP model for what
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F . Orbital node differences (deg) between estimated (without LTE) and simulated (with LTE) Galileo orbits (a) with an error
in F0 of 20% and (b) with an error in F0, Y- and Z-bias.

Surface Area Refl. coeff. visible
(m2) gold silver

geom diff geom diff
bus top 1.32 0.14 0.56 0.18 0.72
bus bottom 1.32 0.14 0.56 0.18 0.72
bus left 2.75 0.14 0.56 0.18 0.72
bus right 2.75 0.14 0.56 0.18 0.72
bus front 3.00 0.14 0.56 0.18 0.72
bus back 3.00 0.14 0.56 0.18 0.72
panel left 11.70 0.04 0.16 0.04 0.16
panel right 11.70 0.04 0.16 0.04 0.16

T . Macro model parameters for the Galileo satellites based
on gold and silver coatings.

it is essential to know the Galileo vehicles shape and
surface properties. Also some model parameters such as
F0, the Y- and Z-biases need to be estimated. e un-
certainty arising from the SRP model is unavoidable,
however a significant reduction could be achieved only if
theGalileo satellites would be equippedwith accelerom-
eters, which measure all non-conservative forces acting
on the satellites.

5 Discussion and Conclusions

Using simulated Galileo orbits and observations, the ef-
fect of the orbit parameterization on the detection of
the LTE and the effects of SRP on the Galileo nodes
are analyzed.

e best parameterizations for the LTE estimation
with 1-day and 3-day Galileo orbits are proposed. It is
shown that the best parameterization depends on the
arc length. In general, the station coordinates cannot

F . Orbital node differences (deg) between simulated orbits
considering gold or silver/aluminium coatings.

be freely estimated but they must be fixed or highly
constrained, f. i. by imposing a set of NNTRS condi-
tions. In addition, the empirical accelerations in the nor-
mal direction to the orbital plane and the X-bias of the
SRP model must not be estimated, since they absorb
the LT signal in the orbital nodes. When processing 1-
day arcs, the SRP parameters (F0, Y- and Z-bias) and
the Earth’s albedo scaling factor can simultaneously be
estimated, however with 3-day arcs the Earth albedo
must be fixed. ese optimal parameterizations allow
to estimate the LTE from noise-free observations pro-
vided that there are no errors in the background mod-
els. e possible errors due to the mismodeling of the
background models shall be analyzed in future tests.

e 3-day arcs in combination with the optimal pa-
rameterization seem suitable for a precise estimation of
the LTE from noisyGalileo observations, since the noise
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in the estimated nodes is 5 times smaller than the total
displacement of the node due to the LTE after 3 days. In
the future this must be confirmed with real Galileo ob-
servations. en, assuming no errors in the background
and SRP models, the LTE seems to be estimable from
real Galileo data with a precision of 1% by using the
nodes of 27 satellites and a minimum of 30 3-day arcs,
again assuming no errors in the background models.

e SRP introduces large periodical displacements on
the Galileo nodes, four orders of magnitude larger than
the LTE. e deviations mainly cancel out after each
complete revolution. e resulting node drift is twice
the value of the LTE. In addition, the presence of X-
and Y-biases produces significant nodal drifts, two or-
ders of magnitude larger than the LTE depending on
the orbital plane. e Z-bias introduces small period-
ical effects and an insignificant node drift. Fixing the
SRP parameters (F0, Y- and Z-bias) to incorrect values
yields large errors in the estimated nodes. Hence, these
parameters shall not be fixed or highly constrained in the
estimations, allowing them to absorb the deficiencies in
the SRP model. e choice of wrong reflectivity coef-
ficients of the surface of the satellites can give place to
deviations of the nodes of up to two orders of magnitude
larger than the LTE, which in the end can be reduced
by the estimation of certain SRP parameters.

As a consequence, the measurement of the LTE by
using theGalileo nodes requires an accurate SRPmodel,
like f. i. a macro model fitted to the shape, size, weight
and surface properties of the Galileo satellites. e
macromodel needs to be accompanied by an appropriate
attitude model. e SRP parameters shall be estimated
(F0, Y- and Z-bias), allowing them to absorb the defi-
ciencies of the SRP model.
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Abstract. I review the motivations and the main
ideas that have lead to the introduction of relativis-
tic positioning systems in the form of the so called
“GPS” variables. ese variables allow us to define
a gauge invariant metric, and a gauge-invariant no-
tion of length, curvature... in the context of general
relativity. I show explicitly how the metric can be
measured locally.

1 GPS coordinates

It is common to read that the metric is not an observable
in general relativity (GR), because it is not gauge invari-
ant, or, equivalently, in not invariant under coordinate
transformations. But this is not always true. When the
coordinates are defined in terms of physical degrees of
freedom, the quantities that depend on these physical
coordinates are gauge-invariant, and observable. e
GPS coordinates [11] are particularly simple physical
coordinates, that are easy to implement concretely and
realistically. In fact, they are already implicitly imple-
mented concretely by the global positioning systems,
such as the Global Navigation Systems, or by pulsar sig-
nal receivers. To define these coordinate theoretically,
indeed, it suffices to have four objects in spacetime, and
a way to track light signals.

Furthermore, the GPS coordinates of a spacetime
point depend only on (the closure of ) the past of that

*E-mail: rovelli@cpt.univ-mrs.fr

point. As a consequence, evolution equations in these
coordinates are local. A remarkable property that is ab-
sent in most other manners to define physical coordi-
nates.

Previous attempts to define a complete class of ob-
servables abound in the literature. For instance, in the
presence of matter we can localize things with respect to
the matter [15, 10, 4]. Other (earlier) attempts to write
physical coordinates in GR is to use curvature scalars
[3]. e result is however mathematically very intricate
and physically extremely unrealistic.

GPS coordinates, introduced in [11], are much sim-
pler: consider a general covariant system including the
gravitational field as well as four small bodies. ese
are taken to have negligible mass; they will be consid-
ered as point particles for simplicity, and called “satel-
lites”. ey follow timelike worldliness, and we assume
that a preferred point Oα,α = 1, 2, 3, 4 is marked in
each of them. en (there is a region R of spacetime
for which) we can uniquely associate four numbers sα
to each spacetime point p as follows. e past lightcone
of p intersect the four geodesics in four points pα. e
numbers sα are defined as the time lapsed between Oα

and pα along the α world line. We can use the sα’s as
physically defined coordinates.

e components gαβ(s) of the metric tensor in these
coordinates are observable quantities. ey are invari-
ant under four-dimensional diffeomorphisms (because,
of course, these deform the metric as well as the satel-
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lites’ worldlines). ey define a complete set of observ-
ables for the region R.

e physical picture is simple, and its realism is trans-
parent. Imagine that the four “satellites” are in fact
satellites, each carrying a clock that measures the proper
time along its trajectory, starting at Oα. Imagine also
that each satellite broadcasts its local time with a ra-
dio signal. At the point p, a receiver can receives the
four signals and displays the four readings. See Figure
1. ese four numbers are precisely the four physical
coordinates sα defined above. Current technology per-
mits to perform these measurements with accuracy well
within the relativistic regime [2, 5, 6, 7, 8, 12, 13, 14]. A
rod and a clockmeasuring physical distances between sα
coordinates points, measure the components of themet-
ric tensor in the physical coordinate system. (In the ter-
minology of Ref. [10], the sα’s are partial observables,
while gαβ(s) are complete observables.)

e physical coordinates sα have nice geometrical
properties. First, they are characterized by

gαα(s) = 0, α = 1, . . . , 4. (1)

is is because the constant sα surface, for a given α,
is null, therefore the surface element has null volume,
and gαα is the volume element of this surface. Second,
the evolution equations for gαβ(s) are local, as shown in
[11]. ese evolution equations can be written explicitly

using the Arnowitt-Deser-Misner (ADM) variables [1]
and Lapse and Shift turn out to be fixed local functions
of the three metric.

e coordinates sα are null coordinates, but we can
easily use them to define more common space and time
coordinates in a region. For instance, we can define sµ
around some point p by

sµ = Wµ
α δsα (2)

where δsα is he difference with the respect of the coor-
dinates of p and W

µ
α is a fixed matrix that transforms

null direction is space and time directions.

2 Measuring the metric

How to measure the spacetime metric with local mea-
surements? Here I recall that this is possible, and how
it can be done.

e setting is the following. Assume that the space-
time region R of interest is described by a metric field
gµν(x)which is not known. e only assumption about
this metric is that in the region of interest the maximum
curvature scale is given by a valueA, which we assume to
be know. In other words, the metric is not too “rough”,
below a given scale. Assume that somewhere in the
universe there are four emitters that broadcast a signal,
which can be received in the region R. Concretely, this
can be a Navigation System-like artificial signal broad-
casting the emission proper time, or the periodic sig-
nal of a pulsar. Assume that the measuring device for
measuring the metric is a swarm of freely falling flying
objects equipped with the following devices:

• a clock measuring proper time along the world line
of each device,

• a receiving antenna that detects the signals of the
four emitters and reads the emitter’s proper time.
In the case of the pulsar, I assume that onboard
clock can resolve time by a greater precision than
themillisecond pulsar period, by simply linearly in-
terpolating between pulses.

• a laser ranging technology that allows each flying
object to track the distance of its immediate neigh-
bors in the swarm, by sending a light signal to the
neighbor, and measuring the proper time between
emission and reception of the reflected signal.

• a way to detect the moment at which the radar sig-
nal emitted by a neighboring device is reflected.
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With these data, the metric can be reconstructed with
arbitrary precision, if the average distance between the
flying devices and the clock’s accuracy are sufficiently
small with respect to A.

is is how the reconstruction works. On a
given object O, at some given moment, let sα =
(s1, s2, s2, s3, s4) be the reading of the four signals emit-
ted by the four external emitters (interpolated is neces-
sary for the pulsars), that is, GPS coordinates. ese
readings will be used as a concrete coordinatization of
the points in R. At some given moment p, let this read-
ing be sαp . Wait for a proper time T (much shorter than
A) and take the new reading of the four signals. Let this
be sαT = sαp + ∆sαT . We can use the basic definition of
the metric field, which is

ds2 = gµν(x)dx
µdxµ (3)

and since we have assumed that T is much shorter than
A, we can treat the finite∆sαT intervals as infinitesimals,
and get a condition for the components gαβ(s) of the
metric in the coordinate system defined by the coordi-
nates sα:

T = gαβ(sp)∆s
α
T∆s

β
T . (4)

Next, at the same moment sαP , a signal was sent from
O to the three of the neighboring devices on the swarm
(labelled a = 1, 2, 3), was received back on O after a
time 2Ta, and the coordinates of the neighboring object
at themoment of the reflection is recorded (on the object

a, and later communicated) and called sαa = sαp +∆sαa .
en, as before, this implies

cTa = −gαβ(sp)∆s
α
a∆s

β
a . (5)

Next, with the same technology, let cTab be the distance
between the object a and the object b at the reception
time. Since these distances are much smaller thanA, we
can consider spacetime locally flat and from the three
lengths of the three sides of the triangle formed by the
three objectsO,a and b, we can compute the angleϕab

at of this triangle at O (which is the angle under which
a and b at seen by O). is is given by Hero formula

TaTb cosϕab = T 2
a + T 2

b − T 2
ab, (6)

Sowe have immediately onemore condition on themet-
ric

c(T 2
a + T 2

b − T 2
ab) = −gαβ(sp)∆s

α
a∆s

β
b . (7)

Finally, let’s observe that the surfaces where one coordi-
nate is constant are null surfaces, therefore the norm of
their covariant normal vanishes, as this is given by the
diagonal matrix elements of the controvariant metric,
we have (no summation)

0 = gαα(sp). (8)

Now in these equations, all the quantities
T , Ta, Tab,∆sαT ,∆sαa , sαp are concretely measur-
able. e sα and ∆sα quantities are readings form
the four distant emitters (or given by counting pulsate
pulses plus interpolation), while the times T , Ta, Tab
are directly read by onboard clocks. erefore the
equations can be solved for gαβ(sp) at the given
point sαp . is can be done on a grid of points. If the
grid is fine enough, the metric can be reconstructed
with arbitrary precision. Notice that the individual
components gαβ(s) of the metric in the coordinates
sα are gauge-invariant quantities in general relativity:
they are uniquely determined physically by the matter
and the gravitational field. erefore they observable
quantities, in the sense of gauge theories. Here I have
shown how they can be concretely measured.

Where is the curvature? Within each cell defined by
the grid, there cannot be curvature, by assumption, of
course: if in reality there is curvature, it is averaged away
by the measuring procedure. But at the immediately
higher scale, curvature is immediately detected. To see
this, imagine for a moment that we focus for simplic-
ity on spacial curvature, which is easier to have intuition
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about. Consider two objects, say a and b. And a ring of
three other objects labelled as 1, 2, 3 forming a triangle
that surrounds the line between a and b. e four de-
vices a,b, 1, 2 form a tetrahedron. In a tetrahedron, the
dihedral angle φab at the side (a,b) can be computed
explicitly from the lengths of the sides. It is given by the
formula

cosφab =
cosϕa12 − cosϕab1 cosϕab2

sinϕab1 sinϕab2
, (9)

where ϕabc is the angle at a in the abc triangle. Let
φ1 be the dihedral angle at the side ab of the tetra-
hedron a,b, 2, 3 and so on cyclically. en clearly if
space is flat the three dihedral angles must sum up to
2π. If they don’t, this means that there is curvature at
the side ab. erefore, following Regge, we can define
the deficit angle

δab = 2π−

3∑
i,1

φi. (10)

e deficit angle is the discrete version of the cur-
vature. (It is given by the components of the Rie-
mann tensor that rotate in the plane normal to the side,
and integrated in a plane normal to the side: δab ∼

Rα
βγθ∆s1α∆s

β
2 ∆s

γ
1 ∆s

θ
2 ) e dihedral angle is an ex-

plicit function of the measured quantities. Hence these
measures detect curvature systematically. e same con-

struction (which I do not give here for simplicity) works
in four dimensions.

In conclusion, given GPS coordinates and a swarm
of objects equipped with clocks and capable of tracking
the relative distances from their immediate neighbors
via laser tracking, the spacetime geometry of a region
can be fully reconstructed down to the scale of the aver-
age objects’ distance.

It is may be useful to recall here the distinction be-
tween partial and complete observables [10]. A partial
observable is a quantity to which a measuring procedure
can be associated. A complete observable is an observ-
able quantity that can predicted by the theory, or, equiv-
alently, whose knowledge provides information on the
state of the system. e GPS coordinates are partial ob-
servables: we can associate them a measuring procedure
(this is what has been done in this paper), but we can
of course not “predict” s1. e complete observables,
or true observables, are the quantities gµν(s), for any
given value of the coordinates sµ. ese quantities are
diffeomorphism invariant, are uniquely determined by
the initial data and in a canonical formulation are rep-
resented by functions on the phase space that commute
with all constraints.

ese observables are straightforward generalization
of Einstein’s “point coincidences”¹. In a sense, they are
precisely Einstein’s point coincidences. Einstein’s “ma-
terial points” are just replaced by photons (light pulses):
the spacetime point sα is characterized as the meeting
point of four photons designated by the fact of carrying
the radio signals sα.
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Abstract. e motion of satellite constella-
tions similar to GPS and Galileo is numerically
simulated and, then, the region where bifurcation
(double positioning) occurs is appropriately repre-
sented. In the cases of double positioning, the true
location may be found using additional informa-
tion (angles or times). e zone where the Jaco-
bian, J, of the transformation from inertial to emis-
sion coordinates vanishes is also represented and
interpreted. It is shown that the uncertainties in
the satellite world lines produce positioning errors,
which depend on the value of |J|. e smaller this
quantity the greater the expected positioning er-
rors. Among all the available 4-tuples of satellites,
the most appropriate one –for a given location–
should minimize positioning errors (large enough
|J| values) avoiding bifurcation. Our study is par-
ticularly important to locate objects which are far
away from Earth, e.g., satellites.

1 General considerations

Global Navigation Satellite Systems (GNSSs) are satel-
lite constellations broadcasting signals, which may be
used to find the position of a receiver (user) [7]. GNSSs
are mainly used to locate receivers on Earth surface. In
this case, users receiving signals from four or more satel-
lites may be always located with admissible positioning
errors. However, if the user to be located is far away
from Earth, two main problems may arise, the first one

*Corresponding author. E-mail: Diego.Saez@uv.es

is the existence of two possible positions for the object
(bifurcation), some previous considerations about this
problem may be found in [1, 3, 10]. e second prob-
lem is related to the positioning errors due to uncer-
tainties in the world lines of the satellites. ese er-
rors are proved to be too big for some user positions
close to points where the Jacobian J –of the transforma-
tion from inertial to emission coordinates– is too small.
In this paper, we find and represent the regions where
the above problems arise. Only numerical calculations
may be used to find these regions in the case of real-
istic GNSSs. Moreover, their representation is an ad-
ditional problem, which have been solved by choosing
appropriate sections –of the 4D emission region– and
by using suitable methods previously developed in other
research fields (see below). e mentioned regions have
been only studied in the interior of a big sphere having
a radius of 105 km, which is centred in a point E of the
Earth surface (see Fig. 1).

Quantities G, M⊕, t, and τ stand for the gravita-
tion constant, the Earth mass, the coordinate time, and
the proper time, respectively. Greek (Latin) indexes run
from 0 to 3 (1 to 3). Quantities ηαβ are the covariant
components of the Minkowski metric tensor. Our sig-
nature is (+,+,+,–). e unit of distance is assumed to be
the Kilometre, and the time unit is chosen in such a way
that the speed of light is c = 1. e index A numerates
the four satellites necessary for relativistic positioning.

GPS and GALILEO satellite constellations are sim-
ulated [14, 15]. Satellite trajectories are assumed to be
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circumferences in the Schwarzschild space-time created
by an ideal spherically symmetric Earth. A first order
approximation inGM⊕/R is sufficient for our purposes.
e angular velocity isΩ = (GM⊕/R

3)1/2, and coordi-
nate and proper times are related as follows: γ = dt

dτ
=

(1 −
3GM⊕

R
)−1/2 . Angles θ and ϕ fix the orbital plane

(see [15]), and the angle αA(τ) = αA0 −Ωγτ localizes
the satellite on its trajectory. is simple model is good
enough as a background configuration. Deviations with
respect to the background satellite world lines will be
necessary to develop our study about positioning accu-
racy (see below).

Other known world lines (no circumferences) of
Schwarzschild space-time might be easily implemented
in the code, but the new background satellite configura-
tions would lead to qualitatively comparable numerical
results; at least, for the problems considered in this pa-
per.

e angle αA(τ) may be calculated for every τ, and
the two angles fixing the orbital plane (θ andϕ) are con-
stant. From these three angles and the proper times τA,
the inertial coordinates of the four satellites, xαA, may
be easily found to first order in GM⊕/R [15]. is
means that the world lines of the background satel-
lites [functions yα = xαA(τ

A)] are known for ev-
ery satellite A. Hence, given the emission coordi-
nates (τ1, τ2, τ3, τ4) of a receiver, the inertial coordi-
nates xαA ≡ (xA,yA, zA, tA) of the four satellites –at
emission times– may be easily calculated. e knowl-
edge of the satellite world lines is necessary for posi-
tioning; namely, to find the inertial coordinates from
the emission ones [4].

e satellite world lines are also necessary to go from
the inertial coordinates of an user to its emission ones.
is transformation is now considered under the as-
sumption that photons move in the Minkowski space-
time, whose metric has the covariant components ηαβ.
is approach is good enough for us. Since photons fol-
low null geodesics from emission to reception, the fol-
lowing algebraic equations must be satisfied:

ηαβ[x
α − xαA(τ

A)][xβ − x
β
A(τ

A)] = 0 . (1)

ese four equations must be numerically solved to get
the four emission coordinates τA. e four proper times
are the unknowns in the system (1), which may be eas-
ily solved by using the well known Newton-Raphson
method [13]. Since the satellite world lines are known,
functions xαA(τ

A) may be calculated for any set of
proper times τA, thus, the left hand side of Eqs. (1) can

be computed and, consequently, the Newton-Raphson
method may be applied. A code has been designed to
implement this method. It requires multiple precision.
Appropriate tests have been performed [15].

Moreover, given four emission coordinates τA,
Eqs. (1) could be numerically solved to get the un-
knowns xα, that is to say, the inertial coordinates (po-
sitioning); however, this numerical method is not used.
It is better the use of a certain analytical formula giv-
ing xα in terms of τA, which was derived in [4]. e
analytical formula is preferable because of the follow-
ing reasons: (i) the numerical method based on Eqs. (1)
is more time consuming and, (ii) the analytical formu-
lation of the problem allows us a systematic and clear
discussion of bifurcation, and also a study of the posi-
tioning errors close to points of vanishing Jacobian.

e analytical formula [4] has been described in
various papers [4, 7, 5, 15], and numerically applied
in [14, 15]. is formula involves function χ2, which
is the modulus of the configuration vector, and a dis-
criminant ∆. e definitions of both χ2 and ∆ may be
found in [4, 7, 6]. It is very important that these two
quantities may be calculated by using only the emission
coordinates τA. From the analytical formula giving the
inertial coordinates in terms of the emission ones, and
taking into account some basic relations of Minkowski
space-time, the following propositions have been previ-
ously proved [4, 5, 7]:

(a) For χ2 6 0, there is only a positioning (past-like)
solution.

(b) For χ2 > 0 there are two positioning solutions;
namely, there are two sets of inertial coordinates (two
physical real receivers) associated to the same emission
coordinates τA.

(c) e Jacobian J of the transformation giving the
emission coordinates in terms of the inertial ones van-
ishes if and only if the discriminant ∆ vanishes.

(d) e Jacobian J may only vanish if χ2 > 0; namely,
in the region of double positioning (bifurcation).

(e) e Jacobian Jmay only vanish if the lines of sight
–at emission times– of the four satellites belong to the
same cone (with vertex in the user).

ese conclusions are basic for the numerical estima-
tions and discussions presented below. In particular,
after calculating χ2 and ∆ from the emission coordi-
nates, propositions (a) and (b) allow us to find the re-
gions where bifurcation takes place, whereas the zones
with vanishing Jacobian (infinite positioning errors)may
be found by using proposition (c).
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2 Emission region

For every set of four satellites, the so-called 4D emis-
sion region [4, 7, 15] is studied by considering 3D
sections t = constant. Each of these sections is
covered by points according to the method described
in Fig. 1. Let us here give some additional details.
Healpix package –first used in cosmic microwave back-
ground researches [11]– is used to define 3072 direc-
tions. A segment with one of its ends at E and hav-
ing length Lmax = 105 km is associated to each direc-
tion. A great enough number of points are uniformly
distributed along every direction. e inertial coordi-
nates of the chosen points are known by construction;
then, the Newton-Raphson method –implemented in
our numerical codes– gives the associated emission co-
ordinates, which allow us the computation of χ2 and
∆ (see section 1). With these quantities, we may find
the zeros of both χ2 and J [proposition (c) of section 1]
along any given direction. As it is displayed in Fig. 1,
various zeros of χ2 and Jmay be found in each direction.
ey may be distributed in different ways by obeying
proposition (d) of section 1.

Once the zeros of χ2 and ∆ have been found for all
the Healpix directions (3072), an appropriate method is
necessary to display the results. Our method is based
on the Healpix pixelisation and the mollwide projection
(see [15] for more details). Healpix associates a pixel to
each direction. e pixel colour measures the value of
some chosen quantity according to the colour bar dis-
played in our figures, which are mollwide projections of
the pixelised sphere.

e structure of the 3D section considered in Fig. 2
(t = 25 h after the time origin) is displayed in seven
panels. e blue pixels of panel (a) show the direc-
tions of the four chosen satellites when they emitted the
signals received at point E. Since satellite velocities are
much smaller than the speed of light, the satellite posi-
tions at emission times are very similar for every point of
the 3D section under consideration. In order to under-
stand panels (b)–(h) the reader need to know the quan-
tity associated to every colour bar and themeaning of the
grey pixels. In panel (b) [(e)], the colour bar shows the
distance from E to the first zero of χ2 [J], and along the
directions corresponding to the grey pixels, function χ2

[J] does not vanish, at least, up to a distance Lmax from
E. In panel (c) [(f )], the colour bar gives the distance
from the first to the second zero of χ2 [J], and function
χ2 [J] does not vanish two times in the directions of the
grey pixels (up to Lmax) and, finally, in panel (d) [(g)]

the colour bar displays distances from the second to the
third zero of χ2 [J], and no a third zero of χ2 [J] has
been found along the directions of the grey pixels (up
to Lmax). In some cases, there are no directions with
more than one zero of functions χ2 (see [15]) and J. In
any case, panels (c)–(g) of Fig. 2 show that there are
only few directions with two zeros of these functions,
and also that directions with three zeros are very scarce.
Other 3D sections and other 4-tuples of satellites have
been studied with similar results.

From Figs. (1) and (2), it follows that the emission
region has the following structure: there are directions
without zeros of χ2 and J. ese directions subtend
a great solid angle [grey pixels of panels (b) and (e)].
e complementary solid angle corresponds to direc-
tions with one or more zeros of χ2. From point E to
the first zero of χ2 there is no bifurcation, but it ap-
pears beyond the first zero. For the small number of
directions having a second zero, there is no bifurcation
beyond this zero, but it occurs again beyond the third
zero (see Fig. 1), which only exists for very scarce direc-
tions. We have verified that, according to proposition
(d) of section 1, the Jacobian only vanishes in regions
with bifurcation.

3 Positioning errors and satellite
uncertainties

e background world lines of the satellites are the
circumferences of section 1, whose equations have the
form yα = xαA(τ

A). Let us first suppose that the back-
ground world lines are exactly followed by the satellites
(without uncertainties). Under this assumption, given
the inertial coordinates xα of an user, the background
world line equations, Eqs. (1), the Newton-Raphson
method, and multiple precision may be used to find the
emission coordinates τ1, τ2, τ3, τ4 with very high accu-
racy. Finally, the chosen inertial coordinates xα may
be recovered from the emission ones –with very high
accuracy– by using the analytical solution derived in [4].
is process is useful to prove that our numerical codes
work with high accuracy.

Let us now suppose that there are uncertainties in
the satellite world lines, whose equations are yα =
xαA(τ

A) + ξαA, where ξαA are deviations with respect
to the background world lines due to known or un-
known external actions on the satellites. Let us now
take the above inertial coordinates xα, the equations
ηαβ[x

α − xαA(τ
A) − ξαA][x

β − x
β
A(τ

A) − ξ
β
A] = 0, the
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F . 3D sections (t = constant) of the emission region are considered. Point E is an arbitrary centre. Its distance to the origin
O is the Earth radius. L is the distance from E to another point of the section. 3072 segments starting from E and having distinct
directions cover each 3D section. Along each direction our study is restricted to 0 < L < Lmax = 105 km. We look for the zeros of χ2

and J. e Jacobian only may vanish in the segments where χ2 > 0, which are limited by the first and second or by the third and fourth
χ2-zeros.

Newton-Raphson method, and multiple precision, to
get the perturbed emission coordinates [τ1+∆(τ1), τ2+
∆(τ2), τ3 + ∆(τ3), τ4 + ∆(τ4)]. Since the time devi-
ations ∆(τA) are all small, quantities ξαA may be as-
sumed to be constant in the short interval [τA, τA +
∆(τA)]. Finally, by using the analytical solution men-
tioned above, new inertial coordinates xα +∆(xα) may
be obtained from the emission coordinates τA and the
deviations ξαA. Coordinates xα +∆(xα) are to be com-
pared with the inertial coordinates xα initially assumed.

Quantity ∆d = [∆2(x1) + ∆2(x2) + ∆2(x3)]1/2 is a
good estimator of the positioning errors produced by the
assumed uncertainties, ξαA, in the satellite motions.

For a certain direction, we have taken an interval of
200 km centred at a zero of function J and, then, quan-
tity∆d has been calculated in 200 uniformly distributed

points of the chosen interval. In each of these points,
the same deviations ξαA have been used to perturb the
satellite world lines. e three quantities ξiA have been
written in terms of the modulus ΞA = [(ξ1

A)
2+(ξ2

A)
2+

(ξ3
A)

2]1/2 and two angles Θ and Φ (spherical coordi-
nates) and, then, quantities ΞA, Θ, Φ, and ξ4

A have
been generated as random uniformly distributed num-
bers in the intervals [0, 10−3] in km, [0,π], [0, 2π], and
[0, 10−3] in time units (see section 1), respectively. Re-
sults are presented in Fig. 3, where we see that our es-
timator of the positioning errors ∆d is very large close
to the central point where J = 0. is fact is important
in section 4 (satellite positioning). It is due to the fact
that the satellite to be located may cross the region of
vanishing J.

e Jacobian is being numerically calculated –in any
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(a)

(b) (e)

(c) (f )

(d) (g)

F . Structure of section x4 = t = 25 h for L < 105 km

point of the emission region– to perform a relativistic
study of the so-called dilution of precision [12]; namely,
to look for the relation between the geometry of the sys-
tem satellites-user and the amplitude of the positioning
errors. is study must be developed for users on Earth,
as well as for users far away from Earth (satellites).

4 Looking for the position of a satellite

In this paper, we are concerned with the location of users
which move far away from Earth as, e.g., an user in a
satellite. Of course, we use the emission times broad-
cast by four satellites, which might belong, e.g., to GPS
or Galileo GNSSs. Two particular cases are considered.

In the first (second) one, the user travels in a Galileo
(GPS) satellite and the emitters are four GPS (Galileo)
satellites. us, the world lines of the user and the emit-
ters are known (see section 1). As it follows from sec-
tion 2, there is no bifurcation for distances to E smaller
than about 104 km, which means that GPS and Galileo
satellites, which have altitudes of 20200 and 23222 km,
may pass from a regions with bifurcation to other re-
gion with single positioning or vice versa. e parts of
the user circumference where bifurcation occurs are now
determined in the two cases. Results of the first (second)
case are presented in panel (h) [(i)] of Fig. (4).

7200 equally spaced points are considered on the user
world line. In each point, the emission coordinates are
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F . Estimator ∆d (in km) against the distance L to E (in
Mm ≡ 103km) along the chosen direction in a 200 km interval
centred at a point where J = 0. Close to this point, quantity ∆d

takes on very large values

calculated (Newton-Rhapson) and, from them, the sign
of χ2 is found, this sign tell us if the point is single valued
or it has an associated false position (bifurcation). Single
valued points are red and are always located on the user
circumference.

Four sets of 1800 points have been selected and –in
the case of bifurcation– these sets have been ordered in
the sense of growing time (dextrogyre) by using the fol-
lowing sequence of colours: black, fuchsia, dark blue
and light blue.

Initial points may be: a single valued red point (rep-
resented by a star) or a bifurcation represented by two
black stars.

Since GPS and GALILEO satellites have not the
same period, the final point has not always the same χ2

sign as the initial one. In the case of bifurcation one of
the points is on the circumference and the other point
is an external light blue star.

In the transition from red (single positioning) to any
other colour (bifurcation), one of the positions is on the
circumference and the other one tends to infinity. e
same occurs from any colour (bifurcation) to red (single
positioning). Any other colour change is continuous. It
is due to the fact that we have decided to change the
colour to follow the satellite motion.

In panel (i) of Fig. (4), there are no bifurcation at
all (red points). is is an exceptional case. A more
frequent situation with zones of bifurcation is given in
panel (h), where the asymptotic behaviour at the ends
of the bifurcation intervals is displayed.

5 General discussion

In our approach, satellites move in Schwarzschild space-
time, so the effect of the Earth gravitational field on the
clocks is taken into account, e.g., it has been verified
that GPS clocks run more rapid than clocks at rest on
Earth by about 38.4 microseconds per day. is predic-
tion agrees with previous ones, which strongly suggests
that our methods and codes work.

Since the Earth gravitational field produces a very
small effect on photons while they travel from the satel-
lites to the receiver (the covered distance is not large
and the gravitational field is weak), photons have been
moved in Minkowski space-time.

We are currently moving photons in Schwarzschild,
Kerr, and PPN space-times; however, only small cor-
rections arise with respect to the approach assumed here.
Previous work on this subject has been performed in var-
ious papers [8, 9, 2].

In this paper, the emission coordinates are calculated,
from the inertial ones, by using accurate numerical codes
based on the Newton-Raphson method. However, the
inertial coordinates are obtained, from the emission
ones (positioning), by means of the analytical transfor-
mation law derived in [4].

From the emission coordinates and the satellite world
lines, one easily finds the number of possible receiver
positions. If this number is two, there is bifurcation.
In this case, it has been proposed a method (based
on angle measurements) to select the true position [7].
Other methods (based on time measurements) are pos-
sible (see [15]).

We have proved that small uncertainties in the satel-
lite world lines produce large positioning errors if J ≃ 0.
Amore detailed study of this type of errors is in progress.

e emission region has been studied for a certain 4-
tuple of satellites. e zones with bifurcation and those
having small values of |J| have been found, and appro-
priate methods have been used to their representation.
We have seen that satellites moving at altitudes greater
than about 104 km may cross these zones, which leads
to problems due to bifurcation and large positioning er-
rors. In a GNSS there are various 4-tuples of satellites
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(h) (i)

F . Left: positioning a Galileo satellite with four GPS emitters. Right: same for a GPS satellite and four Galileo emitters.

which may be used to find the position of a certain user.
Among the possible 4-tuples without bifurcation, we
should choose the 4-tuple leading to the greatest value
of |J| to minimize positioning errors.

Positioning on Earth surface is always single (χ2 6 0)
and the Jacobian does not vanish in this case. Hence,
our study is particularly relevant in the case of users
moving far away from Earth.

Acknowledgments is work has been supported
by the Spanish Ministries of Ciencia e Innovación and
Economía yCompetitividad, MICINN-FEDERprojects
FIS2009-07705 and FIS2012-33582.

References

[1] J. S. Abel and J. W. Chaffee. Existence and
uniqueness of gps solutions. IEEE Transactions
on Aerospace andElectronic Systems, 27(6):952–956,
1991.

[2] D. Bunandar, S. Caveny, and R. Matzner. Mea-
suring emission coordinates in a pulsar-based
relativistic positioning system. Phys. Rev. D,
84:104005–9p, 2011.

[3] J. W. Chaffee and J. S. Abel. On the exact
solutions of the pseudorange equations. IEEE
Transactions on Aerospace and Electronic Systems,
30(4):1021–1030, 1994.

[4] B. Coll, J. Ferrando, and J. Morales-Lladosa. Po-
sitioning systems in Minkowski space-time: from

emission to inertial coordinates. Class. Quantum
Grav., 27:065013–17p, 2010.

[5] B. Coll, J. Ferrando, and J. Morales-Lladosa.
From emission to inertial coordinates: an analyti-
cal approach. J. Phys. Conf. Ser., 314:012105–4p,
2011.

[6] B. Coll, J. Ferrando, and J. Morales-Lladosa.
From inertial to emission coordinates: splitting of
the solution relatively to an inertial observer. sub-
mitted to Acta Futura, 2012.

[7] B. Coll, J. Ferrando, and J. Morales-Lladosa. Po-
sitioning systems in Minkowski space-time: Bi-
furcation problem and observational data. Phys.
Rev. D, 86:084036–10p, 2012.

[8] A. Čadež, U. Kostić, and P. Delva. Mapping the
spacetime metric with a global navigation satellite
system. Advances in Space Research, Final Ariadna
Report 09/1301, Advanced Conceps Team. Euro-
pean Space Agency:1–61, 2010.

[9] P. Delva, U. Kostić, and A. Čadež. Numerical
modeling of a global navigation satellite system in
a general relativistic framework. Advances in Space
Research, 47:370–379, 2011.

[10] E. Grafarend and J. Shan. A closed-form solution
of the nonlinear pseudo-ranging equations (gps).
ARTIFICIAL SATELLITES, Planetary Geodesy,
31(3):133–147, 1996.

[11] K. G. E. Hivon and B. Wandelt. Analysis issues
for large cmb data sets. In Proc. of the MPA/ESO

DOI: 10.2420/AF07.2013.103 109



Acta Futura 7 (2013) / 103-110 D. Sáez & N. Puchades

Conference on Evolution of Large Scale Structure. Ip-
scam, Enschede, pages 37–42, 1999.

[12] R. Langley. Dilution of precision. GPS World,
10(5):52–59, 1999.

[13] W. Press, S. Teukolski, W. Vetterling, and
B. Flannery. Numerical recipes in fortran 77: the
art of scientific computing. Cambridge University
Press, New York, pages 355–362, 1999.

[14] N. Puchades and D. Sáez. From emission to in-
ertial coordinates: a numerical approach. J. Phys.
Conf. Ser., 314:012107–4p, 2011.

[15] N. Puchades and D. Sáez. Relativistic po-
sitioning: four-dimensional numerical approach
in Minkowski space-time. Astrophys. Space Sci.,
341:631–643, 2012.

110 DOI: 10.2420/AF07.2013.103



Acta Futura 7 (2013) 111-124
DOI: 10.2420/AF07.2013.111

Acta
Futura

Relativistic space-time positioning: principles and strategies
A T*

Department of Applied Science and Technology, Politecnico di Torino, and INFN, Italy

Abstract. Starting from the description of space-
time as a curved four-dimensional manifold, null
Gaussian coordinates systems as appropriate for
relativistic positioning will be discussed. Different
approaches and strategies will be reviewed, imple-
menting the null coordinates with both continuous
and pulsating electromagnetic signals. In particu-
lar, methods based on purely local measurements
of proper time intervals between pulses will be ex-
pounded and the various possible sources of un-
certainty will be analyzed. As sources of pulses
both artificial and natural emitters will be consid-
ered. e latter will concentrate on either radio- or
X ray-emitting pulsars, discussing advantages and
drawbacks. As for artificial emitters, various so-
lutions will be presented, from satellites orbiting
the Earth to broadcasting devices carried both by
spacecrafts and celestial bodies of the solar system.
In general the accuracy of the positioning is ex-
pected to be limited, besides the instabilities and
drift of the sources, by the precision of the local
clock, but in any case in long journeys systematic
cumulated errors will tend to become dominant.
e problem can be kept under control properly
using a high level of redundancy in the procedure
for the calculation of the coordinates of the receiver
and by mixing a number of different and comple-
mentary strategies. Finally various possibilities for
doing fundamental physics experiments by means
of space-time topography techniques will shortly
be presented and discussed.

*E-mail: angelo.tartaglia@polito.it

1 Introduction

e problem of positioning is as old as the history of
wandering of mankind especially by see. Since the old-
est times the problem was tackled looking at the sky
and associating the observation with time measuring.
Initially time was determined using the rotation of the
earth as a clock and one had to wait until the 18th cen-
tury for the invention of the chronometer to reach an
accuracy appropriated to the development of modern
technological societies.

In our days the global positioning on earth and close
to it is obtained by means of global positioning systems.
e first and most used system, starting to be deployed
at the end of the ’70’s of the last century, is named af-
ter its acronym GPS. A similar one developed by the
former Soviet Union is GLONASS; Europe has started
the deployment of its own Galileo system, which at the
moment has three satellites in the sky. China is plan-
ning to build its global navigation and positioning sys-
tem, named Bei Dou (North star). India and Japan are
also planning to develop national systems, and others
are also considering the possibility to do the same. e
reason for this vast interest is mainly political, since both
GPS and GLONASS are under military control, even
when they are used for civilian purposes. In any case all
these systems, deployed or under implementation, are
such that a continuous control and intervention from
the ground is needed.

GPS, which is a sort of an archetype of all current
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positioning systems, is like a chimera made of differ-
ent pieces. Basically, even using a constellation of 31
satellites (in this very moment) distributed in six orbital
planes, it is transposing at the global terrestrial scale old
techniques of Euclidean geometry together with New-
tonian physics. It essentially determines ranges between
the observer and a number of satellites (normally six of
them) by means of a time of flight determination of sig-
nals sent from the orbiting emitters. At the scale of the
needed positioning it is immediately clear that special
and general relativistic effects cannot be neglected, so
they are introduced as corrections to the classical data.
Relativity enters the process in order to take into ac-
count the behaviour of the orbiting atomic clocks: on
one side their pace appears to be slowed down with re-
spect to a similar clock at rest on the surface of the earth
because of the orbital speed of the satellite; on the other
side the frequency of the orbiting device is increased be-
cause of the gravitational blue-shift depending on the
hight of the orbit. Finally the orbiting clocks must be
synchronous with respect to one another and to the local
clock of the user on earth, because of the need to mea-
sure times of flight. However the purely kinematical rel-
ativistic Sagnac effect produces de-synchronization of
each clock with itself at each revolution, so that from
earth one has to periodically re-align all clocks.

Besides these complications and the way they are
managed, it is also true that GPS is not fit to guide
spacecrafts navigating across the solar system. For such
navigation other techniques are used, all requiring an
almost continuous guidance from earth. e distance
to the spacecraft can be determined with a good accu-
racy (in the order of millimeters) by means of laser or
radio ranging from earth, but the transverse positioning
is far worse and the accuracy rapidly decays with dis-
tance. Usually the spacecrafts for the exploration of the
solar system are equipped with limited capacities of self-
guidance; for instance they carry pictures of the sky that
allow them to an autonomous control of their trim; sim-
ilarly real or reconstructed images of the final destina-
tion enable the spacecraft to autonomously guess its dis-
tance and position with respect to the intended arrival.
All this is however rather complicated and not easy to
manage.

e above drawbacks, despite the enormous strength
of political and commercial constraints, have begun to
stimulate the search for a more up-to-date approach
to positioning. To say the least, we speak today of
space-time as a continuous four-dimensional Rieman-
nian manifold with Lorentzian signature. We should

try and start from that fact for the building of appropri-
ate methods to be used in order to navigate across space-
time; such an approach would include general relativity
from scratch and not as a set of ”corrections” to be made
more or less by hands.

e consequent studies have brought to a better def-
inition of the concepts at the base of positioning, to the
introduction of light coordinates and to the develop-
ment of a number of proposals [14, 10, 6, 9, 7, 2, 17, 8].
Here I shall present a relativistic positioning system that
has been implemented to the level of algorithms and
simulations [16, 15, 21, 22, 20]. It is based on the local
measurement of the ”length” (i.e. the proper time inter-
val) of a stretch of the world-line of an observer between
the arrivals of subsequent pulses from not less than four
independent sources represented by known world-lines
in space-time. An idea considered by many authors is
the one of using pulsars [12, 1, 19, 18, 11],[16, 15, 21],
but other solutions can also be envisaged.

e timing, be it of laser or radio pulses, combined
with relativistic positioning can also be of paramount
importance for fundamental physics and I will shortly
review some possibilities in the final part of the present
document.

2 Reference frames

e very idea of finding a position in space-time implies
the definition and assumption of a reference system with
respect to which the position is defined. ere can exist
reference frames at various scales according to the pe-
culiar applications one is interested in, however, in the
end, some global frame needs be defined within which
all other local and partial frames are located. Of course
what I am writing implies that a global reference frame
can indeed exist and uniquely be defined, which issue is
not at all trivial when applied to the whole visible uni-
verse.

In practice the background reference frame that peo-
ple commonly use is the one of the ”fixed stars”. Today
by ”fixed stars” quasars are meant. Quasars (quasi stellar
objects) are, according to the most accepted interpreta-
tion, active galactic nuclei; the source of their energy is
commonly ascribed to the presence of a massive black
hole, but there are various hypotheses concerning the
mass to energy conversion mechanism. What matters
here, however, is that those bright objects are very far
away, from approximately 3 to approximately 13 billion
light years. eir distance implies that, at the human
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time scales, the quasars appear as being fixed in the sky
despite any proper motion they might be endowed with.
From this fact arises the possibility of having fixed di-
rections pointing along the axes of any Cartesian non-
orthogonal reference frame. ousands of quasars are
known; fig. 1 taken from the Sloan Digital Survey
shows the distribution in the sky of a few of them. e
reciprocal angular positions of the quasars in the sky are
determined by the Very Long Baseline Interferometry
(VLBI) and are known, at the moment, with an accu-
racy of the order of 10−9 rad.

Of course, in order to have a reference frame, three
fixed non-co-planar directions are not enough. An ori-
gin also needs be chosen and this can be done arbitrarily,
in principle. In practice the best we can do, at the mo-
ment, is to choose the origin of our frame located at the
barycenter of the solar system. e barycenter of the so-
lar system is indeed moving with respect to the quasars
and its motion is not an inertial one because it is con-
strained by the gravitational field of the galaxy, but we
assume that the acceleration due to the galaxy is neg-
ligible and consequently we pretend the motion to be
inertial.

is essentially is the International Celestial Refer-
ence System (ICRS), being the quasars the Interna-
tional Celestial Reference Frame (ICRF).

We may then refer to the International Terrestrial
Reference System (ITRS) which can be connected to
the ICRS using the Earth Orientation Parameters given
by the IERS (International Earth Rotation Service, now
International Earth Rotation and Reference Systems
Service).

2.1 Space-time

Everything I have written above is OK in three dimen-
sions, however, if we wish to have a fundamental rela-
tivistic description, wemust refer to space-time as a Rie-
mannian continuum with Lorentzian signature. is
means that we need to include time among the coor-
dinates. When defining an origin for our reference sys-
tem we need to introduce an origin of time as well; it
can be arbitrary, of course, but what we really need is
to associate a duration standard to our space origin. We
consequently imagine to place an atomic clock in the
barycenter of the solar system and to use its time as our
coordinate time. is assumption is not trivial at all,
since we know that, if we compare the readings of two
identical clocks located along two different world-lines,
we find they can differ from one another because of rel-

ative motion of the two clocks and them being placed in
different gravitational potential wells.

In fact, considering space-time, we see that it appears
locally as a sort of crumpled manifold like in fig. 2.

e warps between the quasars and the local terres-
trial observers can be no problem provided they stay sta-
ble during our progressive exploration of our world-line,
over times of the order of typical human times. is as-
sumption can be reasonable for the path along our past
light-cone out of the solar system, but may be question-
able in the final portion close to the observer, where the
proper motion of the latter in the local gravitational po-
tential well can introduce non-negligible time changes.

When setting up a global reference system in a gen-
eral relativistic framework, our definitions actually rest
on a number of implicit assumptions that are added to
the explicit ones. For instance the ICRS implicitly as-
sumes that space-time is asymptotically flat. Treating
quasars as fixed (point-like) objects amounts to say that
their world-lines are straight and parallel: this implies
that ”there” space-time is flat. Most likely, however, in
the universe there is no asymptotic flatness; at most we
may say that in between galaxies, far away from anymat-
ter bunch, space-time is almost flat.

Putting everything together, we should rather say that
the ICRS (or any other analogous reference system) is
defined as being ”drawn” on a flat Minkowski space-
time which coincides with the tangent space-time in
the origin of our reference frame. In order to use the
proper time of the atomic clock located in the origin as
the global coordinate time of our reference implies that
we treat it as being in a globally flat environment.

We have no such problem at the moment, but the use
of the local tangent space-time would make it not trivial
at all to uniquely and understandably transfer position
information to another observer a fewmillion light years
away.

2.2 Coordinates and geodesics

Looking at the problem of defining efficient reference
systems for a Riemannian manifold we need also to de-
cide how to uniquely and smoothly attribute to each
event in the manifold a quadruple of numbers i.e. an
appropriate coordinate set. is may be done in prin-
ciple drawing four independent families of curves. e
curves of each family do not intersect each other and
densely cover the whole manifold. Labeling each curve
by a progressive real number, any intersection of four
curves from different families identifies an event on the
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F . e distribution in the sky of a few quasars taken from the Sloan Digital Survey

F . Artistic three-dimensional view of a ”crumpled” space-time
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manifold and endows it with four coordinates. What
I have described by this process is known as a Gaussian
coordinates system. As for the curves to be used they can
for instance be geodesics of the manifold. Not consider-
ing singularities and defects, geodesics do indeed cover
the whole manifold. In the case of space-time and in
view of the importance of the null cones a good choice
for building a Gaussian coordinate system is to use in-
dependent families of null geodesics. Fig. 3 visualizes
our choice in a simplified bi-dimensional space-time.

In a flatmanifold a whole family of null geodesicsmay
be identified by means of a tangent vector to anyone of
them. It would be a null four-vector like the one written
in eq. (1).

χ = cT(1, cosα, cosβ, cosγ) (1)

It is indeed χ2 = 0. e space components of (1) are
the direction cosines of a three-vector defined with re-
spect to some global reference system of our choice. e
cT factor is optional and does not change the null char-
acter of χ, but contains an additional information on the
period of the signals traveling along the null geodesics
of the family identified by χ, provided they are indeed
periodic.

Suppose now that we have four independent null
four-vectors χ1,2,3,4 and use them as a basis for vectors
in the manifold; the position of any event in the same
manifold is identified by a ”radial” four-vector, expressed
as a linear combination of the basis vectors:

r =
( τ
T

)
a
χa (2)

e index a runs from 1 to 4; the periods of the sig-
nals are assumed to be different from one another in the
quadruple; τ’s are named ”light coordinates” of the event
and the ratios ( τ

T
)a = xa are pure numbers due to the

choice for the scale factor in eq. (1).
e number of actual degrees of freedom in our repre-

sentation deserves a comment. All χ’s of the basis are on
the light cone of the origin of the reference frame (ac-
tually on any light cone if the manifold is globally flat),
which means that, as far as we stay on the light cone,
only three of the null wave vectors can be mutually in-
dependent. ree χ’s are enough to localize events on
the light cone; we need four of them for time-like or
space-like events, i.e. for events out of the light cone.

Rather than using the families of null geodesics, we
may adopt a dual vision. Each χ is associated with a null
four-dimensional hyperplane obtained by Hodge conju-

gation. e corresponding four-form ϖ is ϖ = ∗χ, or
explicitly:

ϖabc = ϵabcdχ
d (3)

ϵabcd is the Levi-Civita fully antisymmetric tensor.
Now we have four independent families of hyperplanes
covering the whole space-time and intersecting each
other. e hyperplanes of a family are null and orthog-
onal to the corresponding χ.

All this is globally true if the manifold is flat; if it is
curved it holds locally.

3 Positioning

On the bases laid down in the previous section, we may
outline a fully relativistic positioning method. Suppose
you have (not less than) four independent sources of
electromagnetic signals located at infinity; suppose then
that they emit pulses at the rate of 1/T per second. e
T parameter of formula (1) is now interpreted as the
repetition time of the pulses rather than the period of
a monochromatic continuous wave. Once this has been
specified we may apply the procedure outlined in the
previous section. e χ’s are associated to the four (or
more) sources; we may identify as duals to the χ’s four
discrete sets of hyperplanes ϖ covering space-time with
an egg crate whose spacings along the directions of the
basis vectors are given by the T ’s, when measured along
the time axis of the background global reference frame.

e situation is schematically shown in fig. 4.
e world-line of an observer necessarily crosses the

walls of successive boxes of the egg crate. If we are able
to label each cell of the crate, we are also able to re-
construct the position of the observer in the manifold.
e use of pulses implies that, realistically, the walls of
the cells are ”thick”. In practice the hypersurfaces on
the graph correspond to ”sandwich waves” carrying the
pulse. A typical emission diagram of one of the sources
will more or less be like the one sketched in fig. 5.

e shape of the pulse is not important as well as it is
not the spectral content of it. What matters is its repro-
ducibility and the stability of the repetition time. Con-
sidering natural pulses, as the ones coming from pulsars,
we find repetition times ranging from several seconds
down to a few milliseconds and lasting a fraction of the
period. As an example of artificial pulses the highest
performance is obtained with lasers: GHz frequencies
are possible with pulses as short as ∼ 10−15 s.

Once pulses are used, we may label them in order, by
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F . Two sets of null geodesics covering a bidimensional curved manifold

F . A bidimensional flat space-time covered by a grid made of null hypersurfaces (actually lines) conjugated to the null vectors
χa,b. e wavy line is the world-line of an observer.
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F . Typical emission sequence of the pulses from a source. Vertically intensities are drawn; the profile of the pulse is not important;
times are proper times of the emitter.

integer numbers, as it can schematically be seen in fig.
6.

e integers can be though of as rough coordinates
identifying the cells of the grid. At this level the ap-
proximation would be rather poor, being of the order of
the size of each cell. If the periods are of the order of
milliseconds this corresponds to hundreds of kilometers.
Looking at fig. 6 we may however notice that the inter-
sections of a given world-line with the walls of the cells
are labeled by a quadruple of numbers, at least one of
which is an integer: these numbers are the coordinates
of the intersection points. We may write the typical co-
ordinate of a position in the crate as ξa = na + xa; the
n’s are the integers, whilst the x’s are the fractional parts.
If we have a means to determine the x’s the localiza-
tion of an intersection event can be done with an accu-
racy much better than the hundreds of km I mentioned
above. Considering that the intersections coincide with
the arrivals of pulses from different sources, the deter-
mination of the fractional part of the coordinates is in-
deed a trivial task, provided the traveler carries a clock,
the space-time is flat and the world-line is straight.
Once one measures the proper intervals between the ar-
rivals of successive pulses a simple linear algorithm based
on elementary four-dimensional flat geometry produces
the x’s [21]. e corresponding light coordinates are

τa = [(n+x)T ]a. e accuracy of the result depends on
the precision of the clock which is being used in order to
measure the proper intervals between pulses and on the
stability of the period of the pulses, which in turn tells
us what the effective ”thickness” of the walls of the cells
of our space-time crate is. Just to fix some order of mag-
nitude, let me remark that nowadays to have a portable
clock with a 10−10s accuracy is quite easy (much better
can be achieved in the lab); on the other side, consider-
ing pulsars, we have some, whose period is known and
stable down to 10−15s. With these figures the final po-
sitioning can be within a few centimeters.

Of course the traveler’s motion will not in general be
an inertial one and space-time will not be flat, however
a short enough stretch of the world-line can always be
confused with the tangent straight line to it and a small
enough patch of space-time can always be confused with
a portion of the local tangent space. In practice we work
on the local tangent space and on a linearized portion
of the world-line. e acceptability of these assump-
tions depends on the accuracy required for the position-
ing and on the constraints posed by the linear algorithm
in use. e reconstruction of a piece of the world-line
requires the knowledge of at least eight successive arrival
times of pulses from the minimal set of independent
sources (four) [21]. So, if δτ is the maximum proper
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F . A straight portion of a world-line is shown in a local flat patch of space-time. e lines of the grid correspond to different
pulses labeled by their ordinal integer. e intersections of the world-line with the walls are localized by quadruples (actually pairs in
the figure) of real numbers one of which is always an integer.

time inaccuracy that we decide to be tolerable, the final
relative accuracy of the positioning will be:∣∣∣∣δxx

∣∣∣∣ 6 4

(
1

τi,i+4n
+

τi,i+1

τ2
i,i+4n

)
δτ (4)

e index i in eq. (4) labels the order of the arrival
events; τi,i+4n is the proper time interval between the
ith and the (i + 4n)th arrival, being n > 1 an integer;
n should assume the highest value compatible with the
straightness hypothesis for the world-line. Of course
the number of pitches that can safely be considered de-
pends on the periods Ta of the emitting sources: the
shorter are the periods, the bigger is the number of paces
that can be used within the linearity assumption.

A pictorial view of what we are doing is as follows.
Imagine to embed the real four-dimensional manifold,
together with its tangent space at the start event, in a
five-dimensional flat manifold; then consider the real
world-line of the traveler and project it onto the tan-
gent space. e world-line on the tangent space is what
we are piecewise reconstructing by our linear algorithm:
in practice we are building a flat chart containing the
projection of our space-time trajectory. e time de-
pendence of the a-dimensional coordinates of the pro-
jected world-line may of course be written in the form

of a power series, as:

xa = ua

τ

Ta
+

1
2
αa

τ2

T 2
a

+ ... (5)

e coefficients ua and αa are proportional to the
four-velocity and four-acceleration of the traveler. e
individual segments used for the reconstruction are
short enough so that the second and further terms of
(5) are negligible with respect to the linear one. Go-
ing on, after a number of paces, the possible presence of
an extrinsic curvature of the projected world-line shows
up; we know that locally it is impossible to distinguish a
gravitational field from a non-gravitational acceleration
so we need additional information for that purpose. In
the case of a gravitational field evidenced by the recon-
struction process I am describing, we get from the data
the gradient of the Newtonian gravitational potential.

In order not to cumulate the distortion introduced
by the projection from the real curved manifold to the
tangent space at a given event, we need periodically to
restart from a further event on the world-line, i.e. to
pass to the tangent space at a different event. If the vis-
ible curvature of the line on the tangent space as well
as the tilt of the successive tangent spaces continues for
long in the same sense, the linearization process, as in all

118 DOI: 10.2420/AF07.2013.111



Relativistic space-time positioning: principles and strategies

similar cases, tends to produce a growing systematic dis-
crepancy with respect to the real world-line, so that pe-
riodically one has to have recourse to some independent
position fixing means in order to reset the procedure.

3.1 Pulsars

I have already mentioned pulsars as possible natural
sources of pulses. is kind of neutron stars are indeed
good pulse emitters because of their extreme stability
and long duration. As we know, their emission is in
the form of a continuous beam. e apparent period-
icity is due to the fact that the emission axis (the mag-
netic axis) does not coincide with the spin axis of the
object so that it steadily rotates, together with the whole
star, about the direction of the angular momentum. e
pulses arise from the periodic illumination of the earth
by the rotating beam. e stability is guaranteed by the
angular momentum conservation.

e advantages of pulsars are numerous. eir period
is extremely stable and is sometimes known with the ac-
curacy of 10−15 s; it tends to decay slowly (the relevant
times are at least months), but with a very well known
trend, determined by the emission of gravitational radi-
ation. Typically the fractional decay rate of the period
is in the order of one part in 1012 per year. e number
of such sources is rather high, so that redundancy in the
choice of the sources is not a problem: at present ap-
proximately 2000 pulsars are known and their number
continues to increase year after year. Being these stars at
distances of thousands of light years from the earth, they
can be treated as being practically fixed in the sky; in any
case their slow apparent motion in the sky is known, so
corrections for the position are easily introduced. Just
to recall some numbers, the rate of change of a typical
angular coordinate α in the position in the sky is∣∣∣∣δαt

∣∣∣∣ ≈ 10−6
(

100pc
distance

)
rad

year
(6)

Unfortunately pulsars have also major drawbacks.
One is that their distribution in the sky is uneven, since
they aremostly concentrated in the galactic plane, which
fact brings about the so called ”geometric dilution” of
the accuracy of the final positioning: sources located on
the same side of the observer produce an amplification
of the inaccuracy originating in the intrinsic uncertain-
ties. Furthermore individual pulses differ in shape from
one another so that some integration time is needed in
order to reconstruct a fiducial series of pulses; this fact,
also considering the length of the repetition time, can

conflict with the linearization of the world-line of the
traveler. It should also be mentioned that most pulsars
are subject to sudden jumps in the frequency (glitches),
caused by matter falling onto the star; these unpre-
dictable changes can be made unoffensive by means of
redundancy, i.e. making use of more than four sources
at a time.

However the most relevant inconvenience with pul-
sars is their extreme faintness. In the radio domain their
signals can be even 50 dB below the noise at the cor-
responding frequencies; to overcome this problem big
antennas are required (not less than 100 m2) and con-
venient integration times accompanied with ”folding”
techniques must be employed. In principle at least four
different sources must be looked at simultaneously and
this is not an easy task, especially with huge antennas.
e weakness problem has led to consider X-ray- rather
than radio-pulsars for positioning. A few hundreds X-
ray emitting pulsars are indeed known; their signals are
weak too, and can be received only outside the atmo-
sphere, but the background noise is far smaller than the
one typical in the radio domain; as for the hardware, X-
ray antennas can be much smaller than the typical radio-
antennas. Since many galactic X sources emit also at
radio frequencies, one can envisage the opportunity to
combine both X-ray and radio pulses from one single
source for the positioning process.

3.2 Artificial and blended solutions

In principle what can be done using pulsars can as well
be done by means of artificial emitters of electromag-
netic pulses. Artificial emitters can have far higher in-
tensities than pulsars; the repetition time can easily be
in the range of ns or less, thus making the lineariza-
tion process more reliable. e stability over time of the
source is not as good as for pulsars, but this can repre-
sent no inconvenience as far as the number of sources
is redundant and they are kept under control. A prob-
lem is in the sources clearly not being at infinite dis-
tance, which implies a more complicated geometry and
of course the need for a good knowledge of the world-
line of the emitter in the background reference frame.

One could think of building a Solar System reference
frame made of pulse emitters laid down on the surface
of various celestial bodies whose orbits are well known
and reproducible: the earth of course, the moon, Mars,
maybe some of the asteroids; even some space station
following a well defined, highly stable orbit around the
sun or a planet.
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A blended solution for self-guided navigation in the
solar system could combine some artificial emitters, as
quoted above, together with a limited number of pulsars
(the most intensely emitting ones).

e fully relativistic method I have described is of
course specially fit for space navigation, but it can also
be useful in rather limited areas. ink for instance to
the accurate mapping of a depopulated region, where
traditional topography may be rather expensive. If one
puts a limited number of antennas (not less than four
in any case) emitting pulses, located in precisely defined
positions at the boundary of the region to map, their
signals may be used by a moving vehicle to draw a chart
of the area within centimeter accuracy. Of course the
same can be done using differential GPS, but with the
specific features of GPS, mainly the fact that it is under
military control and the best performance of the system
is not reserved to ordinary civilian applications.

One could also think that the new relativistic method
will be implemented in the next generations of global
positioning systems, even though the approach tends to
be rather conservative there, the reason being that the
huge amount of money already spent for developing and
deploying the traditional GPS makes present applica-
tions based on it cheap, whereas any new solution would
initially be more expensive. Probably a gradual transi-
tion will happen, triggered by new applications, espe-
cially outside the terrestrial environment, and, last but
not least, political reasons.

4 Positioning and fundamental physics in
space

e method I have being describing for positioning pur-
poses is based on electromagnetic signals and their ac-
curate timing. e same kind of technology can be used
for various experiments aimed to the detection of funda-
mental properties of space-time. It is worth mentioning
a few possibilities.

4.1 Intercommunicating swarms of satellites

Consider a swarm of identical satellites (as the ones of
the future Galileo system), equipped with pulse emit-
ters and receivers and able to accurately measure the ar-
rival times and to recognize the origin of each pulse (this
could be achieved tuning the emitters on different in-
dividual frequencies). e information gathered by the
whole constellation would allow for space-time geodesy,
based on multiple triangulations performed on null tri-

angles. It would be a means to reconstruct the average
curvature of the patch of the manifold where the world-
lines of the satellites lie. e Galileo satellites will in-
deed be able to intercommunicate and also the present
GPS satellites may communicate with each other even
though this possibility (introduced for military reasons)
is not actually used at the moment.

4.2 Ring-lasers

Electromagnetic waves can be used as probes for the
structure of space-time and in particular the gravito-
magnetic part of the gravitational interaction, exploiting
the anisotropic propagation of light induced by the chi-
ral symmetry associated with a rotating mass. is pos-
sibility is the basis of the proposal to use ring lasers for
the measurement of the Lense-irring (frame drag-
ging) effect of the earth [3]. If a light beam is obliged,
by conveniently located mirrors, to follow a closed path
in space, the total time of flight for a loop is different
according to the fact that light is moving in the same
sense as the rotation of the central mass or in the oppo-
site sense. In fact the difference in the proper (i.e. of
the laboratory) times of flight for one turn in co- and
counter-rotating sense, is obtained as [3]:

δτ = −2
√
g00

∮
g0ϕ

g00
dϕ (7)

Polar coordinates centered on the earth are assumed
and the gµν’s are elements of the metric tensor of an
axially symmetric stationary space-time. A ring laser
converts the time of flight difference in a beat note ob-
tained from the two counter-rotating beams in steady
state; the beat note arises from the different equilibrium
frequencies of the two beams. e device in practice can
measure effective angular velocities, which contain the
kinematical effect (classical Sagnac effect), the geode-
tic (or de Sitter) effect (coupling of the gravito-electric
field of the earth with the kinematical rotation of the ap-
paratus) and the gravito-magnetic contribution (Lense-
irring frame dragging). e latter two terms are 9
orders of magnitude smaller than the classical Sagnac
effect when measured on the surface of the planet, so
that a very high sensitivity is needed, but contemporary
laser technologies are approaching the required accuracy
level. Both the de Sitter and Lense-irring effects have
already been measured in space by a different technique
based on the behaviour of mechanical gyroscopes. e
most difficult to reveal is the Lense-irring drag and
it has been measured with an accuracy of 19% by the
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GP-B experiment [13] and 10% by the laser ranging of
the LAGEOS satellites [5]; laser ranging of the orbit is
also being used by the LARES experiment launched on
February 13th 2012, with the purpose of reaching the
1% accuracy [4]. e newly proposed ring laser GIN-
GER experiment [3] is aimed at reaching a 1% accuracy
for the physical terms in a terrestrial laboratory.

Here I would like to mention the possibility of bring-
ing a ring laser experiment in space. One could for in-
stance think of a three-dimensional array of four mir-
rors, rigidly attached to one another in the shape of a
tetrahedron; the whole thing could be in free fall (stable
orbit) around the earth. Each face of the tetrahedron
would coincide with a triangular ring laser; the signal
extracted from each face would give information on the
projection of the total rotation vector on the normals to
the faces. In the case of a circular equatorial orbit the
frequency of the beat note extracted from one of the
faces of area S and perimeter length P would be:

fbeat = 4
S

λPR

√
G
M

R
·[(

1 −
3
4

√
G

M

c2R
+ 4G

M

c2R

)
n̂a · n̂S

−

(
1
2
G

M

c2R
+

GJ

c4R

)
n̂θ · n̂S

] (8)

M is themass of the earth; J is its angularmomentum;
G is Newton’s constant; R is the radius of the orbit; λ is
the wavelength of the light of the laser; n̂S, n̂a, n̂θ are
unit vectors, respectively, perpendicular to the plane of
the ring, aligned with the axis of the earth, aligned with
the local meridian in the sense of increasing co-latitude
(here, in practice, perpendicular to the equatorial plane).

e term depending on the angular momentum of
the earth in eq. (8) is the smallest and is eight orders
of magnitude below the biggest; an extremely good ac-
curacy is always required, but in free fall one has a far
smaller environmental noise than on earth.

4.3 Linear cavities

Another interesting possibility is represented by simple
linear resonating cavities as the ones in Fabry-Pérot in-
terferometers. In fact, when describing a simple bounce
back from a mirror to the other in four-dimensional
space-time, one has a bidimensional graph, like the one
shown on fig. 7 where an active region is assumed in the
middle of two mirrors.

As it can be seen, the light beams moving back and
forth in the cavity delimit a closed contour at each cycle.
is fact implies that the effects of the curvature and
the chiral symmetry of space-time may be expressed in
terms of the Riemann tensor and the contoured area.
Considering the electromagnetic tensor Fµν, its change
after one cycle is given by:

δFµν = (Rµ
ϵ0iF

ϵν + Rν
ϵ0iF

µϵ)δS0i (9)
Latin indices are used for space-coordinates; δSµν is

the antisymmetric area 2-form.
For practical purposes, only the least useful approxi-

mation of the Riemann tensor needs be retained down
to the order of the angular momentum of the earth. An
example of the approximated version of one of the equa-
tions (9) is for instance:

δFθϕ ∼=

(
GM3/2

c3R7/2 − 3
GJ

c3R4

)
cos θ
sin2 θ

l2

R
Fθr (10)

δFθϕ is the change in the radial component of the
magnetic field expressed as a function of the East-West
component; l is the length of the cavity andR is its radial
position with respect to the center of the earth.

e result depends on the orientation of the cavity
and builds up with the successive reflections. One could
think of combining this effect along an array of mutually
perpendicular freely falling cavities.

4.4 An orbital ring cavity

e satellites of the GPS constellation are distributed
on 6 different orbital planes so that 5 of them are on the
same orbit; the Galileo system, when fully deployed will
have 30 satellites on 3 orbital planes so that 10 satellites
will share the same orbit. e presence of at least three
satellites on the same orbit opens an interesting possibil-
ity if they are enabled to communicate with each other.
Suppose each satellite is sending laser pulses to the oth-
ers who are forwarding them along the orbit. In prac-
tice we would have a sort of ring laser at orbital scale. If
at least one of the satellites is equipped with interfero-
metric devices or can accurately measure the arrival time
difference between pulses having completed a clockwise
turn with respect to the ones revolving in the counter-
clockwise sense, the whole system behaves as a gigantic
ring laser (or Sagnac interferometer) with a sensitivity
measured by the huge scale factor given by the ration be-
tween the contoured area and the length of the perime-
ter of the polygon followed by the light pulses.
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F . World-sheet representation of light being reflected back and forth in a linear cavity. A and B are mirrors; O-O’ is the
world-line of an active region in the middle of the two mirrors; the gray stripes identify a space-time area δS.

5 Conclusion

Summing up, I have shown how the approaches to po-
sitioning and navigation could be implemented in or-
der to become fully relativistic. e idea is in the use of
space-time as such as a reference, and in the exploitation
of four-dimensional geometry. In practice a generaliza-
tion is possible of the ordinary three-dimensional topo-
graphic techniques, upgrading them to four dimensions
and the Lorentzian signature. e method, with the
related algorithms, is per se simple and relies on plain
proper time measurements made by the traveller need-
ing to localize himself in a given background reference
frame. Reducing everything to the essentials, we see
that the pattern of the proper arrival times of regular
pulses from not less than four independent sources is
uniquely related to the position of the receiver in space-
time and to its starting event. e relativistic position-
ing method has positively been tested with simulators.
Fig. 8 shows for instance the reconstruction of three
days of the absolute motion of the antenna of the radio-
telescope at the Parkes observatory,obtained by the sim-
ulated timing of four real pulsars [15].

is approach, either based on signals from pulsars
(X ray or radio waves emitters) or on artificial sources
laid down on the surface of the earth and other bodies

of the solar system, will probably raise growing interest
little by little as the need for positioning systems freed
from the control of any specific power will increase. e
same holds with the expansion of navigation within the
solar system. I have also given a few examples of the
importance of timing measurements together with the
use of laser beams or pulses for fundamental physics. It
turns out that light is indeed a perfect relativistic probe
for testing the structure of space-time.
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