
Relativistic Positioning Systems:
Numerical Simulations

Workshop – Relativistic Positioning Systems and their
Scientific Applications
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SATELLITE MOTIONS I

GPS AND GALILEO SATELLITE CONSTELLATIONS ARE
SIMULATED.

Satellite trajectories are assumed to be circumferences in the Schwarzschild
space-time created by an ideal spherically symmetric Earth.

The angular velocity is Ω = (GM⊕/R3)1/2

Coordinate and proper times are related as follows: γ = dt
dτ

=
“

1 −
3GM⊕

R

”−1/2

.

angles θ and φ fixes the orbital plane ( see arXiv:1112.6054[gr-qc] ≡ Astrophys. Space
Sci., 337, 1-issue, 10-01-2012 ≡ paper I for details), and the angle
αA(τ) = αA0 − Ωγτ localizes the satellite on its trajectory

This simple model is good enough as a background configuration. Deviations with respect to
the background satellite world lines will be necessary to develop our study about positioning
accuracy (see below).

Other known world lines (no circumferences) of Schwarzschild space-time might be easily
implemented in the code, but the new background satellite configurations would lead to
qualitatively comparable numerical results; at least, for the problems considered here
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SATELLITE MOTIONS II

SUMMARY (see paper I for details)

A given orbital plane is characterized by the constant angles θ and φ

The angle αA(τ) may be calculated for every τ

From these three angles and the proper time τ , the satellite inertial coordinates
(x1, x2, x3, x4) may be easily found. This means that the world lines of the background
satellites [functions yα = xα

A(τA)] are known for every satellite A

HENCE, given the emission coordinates (τ1, τ2, τ3, τ4) of a receiver (user), the
inertial coordinates of the four satellites –at emission times– are known. This is
necessary for positioning
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FROM INERTIAL TO EMISSION COORDINATES

FROM xα
≡ (x, y, z, t) TO τA

≡ (τ1, τ2, τ3, τ4)

It is assumed that photons move in the Minkowski space-time, whose metric has the
covariant components ηαβ . This approach is good enough for us

Since photons follow null geodesics from emission to reception, the following algebraic
equations must be satisfied:

ηαβ [xα − xα
A(τA)][xβ − xβ

A(τA)] = 0 . (1)

These four equations must be NUMERICALLY solved to get the four emission coordinates
τA, where index A numerates the satellites.

The four proper times are the unknowns in the system (1), which may be easily solved by
using the well known Newton-Raphson method. A code has been designed to implement this
method. It uses multiple precission. Appropriate tests have been performed

Since the satellite world lines are known, functions xα
A(τA) may be calculated for any set of

proper times τ1, τ2, τ3, τ4, thus, the left hand side of Eqs. (1) can be computed and,
consequently, the Newton-Raphson method may be applied
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FROM EMISSION TO INERTIAL COORDINATES

FROM τA
≡ (τ1, τ2, τ3, τ4) TO xα

≡ (x, y, z, t)

Given four emission cordinates τA, Eqs. (1) could be numerically solved to get the
unknowns xα, that is to say, the inertial coordinates; however, this numerical method is not
used. It is better the use of an analytical formula giving xα in terms of τA, which is due to B.
Coll, J.J. Ferrando, & J.A. Morales-Lladosa (Class. Quantum Grav., 27, 2010, 065013)

The analytical formula is preferable because of the following reasons:

The numerical method based on Eqs. (1) is more time consuming

The analytical formulation of the problem allows us a systematic and clear discussion
of the bifurcation problem, and also a study of the positioning errors close to situations
of vanishing Jacobian

The analytical formula has been presented by J. A. Morales-Lladosa in the previous talk. In
particular, this formula involves function χ2 and the discriminant ∆, which may be calculated
from (τ1, τ2, τ3, τ4).
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SOME PREVIOUS THEORETICAL RESULTS

By using: the analytical formula giving the inertial coordinates in terms of the emission ones,
and some basic relations of Minkowski space-time, the following conclusions have been
previously obtained (summary of the previous talk)

for χ2 ≤ 0, there is only a positioning (past-like) solution

for χ2 > 0 there are two positioning solutions; namely, there are two sets of inertial
coordinates (two physical real receivers) associated to the same emission coordinates
(τ1, τ2, τ3, τ4)

the Jacobian J of the transformation giving the emission coordinates in terms of the
inertial ones vanishes if and only if the discriminant ∆ vanishes

the Jacobian J may only vanish if χ2 > 0; namely, in the region of double positioning
(bifurcation)

The Jacobian J may only vanish if the lines of sight –at emision times– of the four
satellites belong to the same cone)

These conclusions are basic for the numerical estimates and discussions presented in next
slides. In particular the third item is used to get the points of vanishing Jacobian. Close to
these points positioning errors are very large
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REGION STRUCTURE ANALYSIS

3D sections (t = constant) of the so-called region are considered. Point E is an arbitrary
center. Its distance to the origin O is the Earth radius. 3072 directions starting from E cover
the 3D sections. Along each direction our study is restricted to 0 < L < Lmax = 105 Km.
We look for the zeros of χ2 and J . The Jacobian only may vanish in the segments where

χ2 > 0, which are limited by the first and second or by the third and fourth χ2-zeros
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REPRESENTATION TECHNIQUES

HEALPIX PIXELISATION(Hierarchical, Equal Area, and iso-Latitude PIXelisation)

MOLLWEIDE PROJECTION

We use 3072 (12288) pixels in the region (co-region) studies, hence, the pixel angular area
is 64 (16) times the mean angular area of the full moon
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REGION RESULTS I

(a) (b)

section x4 = t = 19 h for L < 105 Km (paper I)

white pixels indicate satellite positions at emission times. Function χ2 in (a) [J in (b)]
does not vanish for L < 105 Km along red pixels directions

(a): surface χ2 = 0. For this choice of satellites, χ2 only vanishes one time for each
direction at a distance from E, L⋆. Color bar measures L⋆.

(b): surface J = 0. The Jacobian only vanishes one time for each direction at a
distance from E L > L⋆. Color bar measures L − L⋆.

There are cases in which χ2 and J vanishes various times
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REGION RESULTS II

(c) (d) (e)

(f) (g) (h)

section x4 = t = 25 h for L < 105 Km

(c), (d) and (e) [(f), (g) and (h)] panels represent the first second and third zeros of
function χ2 = 0 [J = 0].
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REGION RESULTS II

meaning of the color bars

(c) distance from E to the first zero of χ2

(d) distance from the first to the second zero of χ2

(e) distance from the second to the third zero of χ2

(f) distance from E to the first zero of J

(g) distance from the first to the second zero of J

(h) distance from the second to the third zero of J

For the chosen satellites and x4 = t = 25 h, there are no more χ2 and J zeros for
L < Lmax = 105 Km

there exist a second zero of χ2 and J only for a few directions, and a third zero of χ2

or J is very rare

In what a segment are located the zeros of J? In the first one (between the first and
second zeros of χ2) or in the second one? Let us see next slide to answer this
question.
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REGION RESULTS III

(i) (j) (k)

(i) color bar represents the distance from E to the second zero of χ2 minus the
distance from E to the first J-zero

(j) color bar represents the distance from E to the second zero of χ2 minus the
distance from E to the second J-zero

(k) color bar represents the distance from E to the second zero of χ2 minus the
distance from E to the third J-zero

In every panel, positive values indicate that the corresponding zero of J belongs to the
first segment (between the first and second zeros of χ2)

In every panel, negative values indicate that the corresponding zero of J belongs to
the second segment (beyond the third zero of χ2)
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CO-REGION STRUCTURE ANALYSIS

3D sections (τ4 = constant) of the co-region are considered. The emission coordinates of
point E are found from the inertial ones of the region center (see above). 12288 directions
starting from E cover every 3D section. We look for the zeros of χ2. For any direction only

one zero is found at a time distance λ− from E. From λ− to a certain λmax, there are
bifurcation with positioning (past-like) or non-positioning (future-like) character. For

λ > λmax we are outside the co-region (the emission-reception conditions are not satisfied)
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CO-REGION RESULTS

(l) (m)

(l) colors measure the time distance from E to the point where χ2 vanishes

(m) for the grey pixels (directions), there are no positioning solutions (but
future-like solutions) between the point where χ2 vanishes and the first point
where the emission-reception conditions are not satisfied

(m) if there are two positioning solutions between the point where χ2 vanishes
and the first point where the emission-reception conditions are not satisfied, bar
colors measure the distance between these two points. In the interval limited by
these points there are bifurcation (χ2 > 0)
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POSITIONING ERRORS AND SATELLITE UNCERTAINTIES I

(a): The background world lines of the satellites are known. Their equations are
yα = xα

A(τA).

(b): Given the inertial coordinate xα of a detection event, the above world lines, Eqs. (1), the
Newton-Raphson method, and multiple presission may be used to find the emission
coordinates τ1, τ2, τ3, τ4 with very high accuracy.

(c): Finally, the chosen inertial coordinates xα may be recovered from the emission ones
–with very high accuracy– by using the analytical solution found by Coll, Ferrando, &
Morales-Lladosa (previous talk).

(a⋆) Let us now suppose that there are uncertainties in the satellite world lines, whose
equations are yα = xα

A(τA) + ξα
A, where ξα

A are deviations with respect to the background
world lines due to known or unknown external actions on the satellites.

(b⋆): Given the same inertial coordinate xα as in (b), the equations
ηαβ [xα − xα

A(τA) − ξα
A][xβ − xβ

A(τA) − ξβ
A] = 0, the Newton-Raphson method, and

multiple presission may be used to get the perturbed emission coordinates
τ1 + ∆(τ1), τ2 + ∆(τ2), τ3 + ∆(τ3), τ4 + ∆(τ4) . Since the time deviations ∆(τA) are all
small, quantities ξα

A may be assumed to be constant.
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POSITIONING ERRORS AND SATELLITE UNCERTAINTIES II

(c⋆): Finally, by using the analytical solution described in previous talk, new inertial
coordinates xα + ∆(xα) may obtained, from the perturbed emission coordinates
τA + ∆(τA). Coordinates xα + ∆(xα) are to be compared with the coordinates xα

obtained in (c).

Quantity ∆d = [∆2(x1) + ∆2(x2) + ∆2(x3)]1/2 is a good estimator of the positioning errors
produced by uncertainties ξα

A in the satellite motions.

For a certain direction, we have taken an interval of 200 Km centered in a zero of J and,
then, quantity ∆d has been calculated in 200 uniformly distributed points in the chosen
interval around J = 0.

For each of the 200 points, the same random deviations ξα
A have been used to perturb the

satellite world lines (with an amplitude of 1 m for every satellite). Results are shown in next
slide:
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POSITIONING ERRORS: PRELIMINARY RESULTS I

Estimator ∆d (in Km) against the distance L to E (in Km) along the chosen direction (in the
200 Km interval). Close to the point where J = 0, quantity ∆d takes on very large values

Slovenia, 19-September-2012– p. 17/25



POSITIONING ERRORS AND SATELLITE UNCERTAINTIES II

In order to see that positioning errors are large, around the point where J = 0, for any choice
of ξα

A, a preliminary statistical study has been performed.

For each point of the chosen interval, ten random deviations ξα
A have been generated

around each satellite (with a maximum amplitude of 1 m in all cases). These deviations have
been combined among them to get 104 cases. Quantity ∆d has been computed in each of
these cases.

The rms (root mean square) value σs of the 104 quantities ∆d has been obtained in each
point. Results are presented in next slide:
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POSITIONING ERRORS: PRELIMINARY RESULTS II

Standard deviation σs (in Km) against the distance L to E (in Km) in the chosen 200 Km

interval. Close to the point where J = 0, typical positioning errors are very big
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GALILEO-GPS AND GPS-GALILEO

(n) (ñ) (o)

(n) and ñ: Positioning a GALILEO satellite (receiver) with four GPS emitters.

(o): Positioning a GPS satellite (receiver) with four GALILEO emitters.

7200 equally spaced points are considered on the receiver world line. In each point, the
emission coordinates are calculated (Newton-Rhapson) and, from them, the sign of χ2,
which tell us if the point has an associated false point (bifurcation) or it is single valued.

Single valued points are red and they are located on the receiver circumference.

Four sets of 1800 points have been selected and –in the case of bifurcation– these sets have
been ordered in the sense of growing time (dextrogyre) by using the following sequence of
colors: black, fuchsia, dark blue and light blue.
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GALILEO-GPS

Initial points may be: a single valued red point (represented by a star) or a bifurcation
represented by two black stars.

Since GPS and GALILEO satellites have not the same period, the final point has not always
the same χ2 sign as the initial one. In the case of bifurcation one of the points is on the

circumference and the other point is an external light blue star.

In the transition from red (single solution) to any other color (double solution), one of the
positions is on the circumference and the other one tends to infinity. The same occurs from

any color (bifurcation) to red (single). Any other color change is continuous (we have decided
to change the color to follow the satellite motion):
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GALILEO-GPS
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GPS-GALILEO
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GENERAL DISCUSSION I

In our approach, satellites move in Schwarzschild space-time, so the effect of the
Earth gravitational field on the clocks is taken into acount, e.g., GPS clocks run more
rapid than clocks at rest on Earth by about 38.4 microseconds per day. It has been
verified and taken into account.

Photons have been moved in Minkowski space-time. It is due to the fact that the Earth
gravitational field produces a very small effect on photons, while they travel from the
satellites to the receiver. The distance travelled is not large and the gravitational field is
weak.

We may obtain the emission coordinates from the inertial ones by using accurate
numerical codes based on the Newton-Raphson method.

We may obtain the inertial coordinates from the emission ones by using the analytic
transformation law of Coll, Ferrando & Morales-Lladosa.

From the emission coordinates and the satellite world lines, one easily known if there
is only a possible receiver position or two (bifurcation). In the second case,
Morales-Ladosa has proposed a method (angle measurements) two select the true
position. Other methods are possible (see, paper I).
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GENERAL DISCUSSION II

Small uncertainties in the satellite world lines produce large positioning errors if J ≃ 0.

If possible, the four emitters (satellites of the chosen GNSS) must be selected to avoid
both bifurcation and situations with J ≃ 0.

Positioning on Earth surface is always single (χ2 ≤ 0) and the Jacobian does not
vanish in this case. Hence, our study applies to the case of objects located away from
Earth surface.

We are moving photons in the case of Schwarzschild, Kerr, and PPN metrics; however,
only small corrections arise with respect to the approach assumed here. Previous work
on this subject has been performed by various authors (see references in paper I).
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