Workshop Relativistic Positioning Systems and their Scientific Applications Brdo near Kranj, Slovenia, 19-21 September 2012

From emission to inertial coordinates: Splitting of the solution relatively to an inertial observer

J. A. Morales-Lladosa

Departament d'Astronomia i Astrofísica Universitat de València

In collaboration with B.Coll and J. J. Ferrando

We consider Relativistic Positioning Systems (RPS) in Minkowski space-time, focussing the attention on:

- (i) the location problem: to determine the inertial coordinates of a user from a standard set of data,
- (ii) the bifurcation problem: to choose the true solution of the location problem when it admits two formal solutions,
- (iii) the space and time splitting of the quantities providing the user location.

Location problem in Global Navigation Satellite Systems (GNSS)

GNSS

Satellite constellation

Emission equations:

$$c(t - t^A) = |\vec{x} - \vec{\gamma}_A(t^A)|$$

$$A=1,2,3,4,\ldots$$

<u>Data</u>: $\{t^A, \vec{\gamma}_A(t^A)\}$ (in a specific terrestrial frame) <u>Unknowns</u>: (t, \vec{x}) user location

- Iterative procedures.
- Numerical algorithms.
- Exact (and covariant) expression.

Confronting numerical and analytical approaches

$$c(t - t^A) = |\vec{x} - \vec{\gamma}_A(t^A)|, \quad A = 1, 2, 3, 4$$

Iterative procedures:

 $\vec{x}_0 \rightarrow t = t_0 \rightarrow \vec{x}_1 \rightarrow t = t_1 \rightarrow \vec{x}_2 \rightarrow \dots$ $A = 4 \qquad A = 1, 2, 3 \qquad A = 4 \qquad A = 1, 2, 3$

P. Delva, U. Kostić, and A. Čadež, J. Adv. Space Res. 47, 370 (2011).

Numerical algorithms:

allowing to draw (t, \vec{x}) from $\{t^A, \vec{\gamma}_A(t^A)\}$

S. Bancroft, IEEE Trans. Aerosp. Electron. Syst. 21, 56 (1985).

L. O. Krause, ibid. 23, 225 (1987).

• Exact covariant expression $\implies x^{\alpha} = f(t^A, \vec{\gamma}_A(t^A)) = \kappa^{\alpha}(t^A).$ B.Coll et al. CQG 27, 065013 (2010).

Kleusberg's algorithm (1994). See G. Strang and K. Borre, *Linear Algebra*, *Geodesy*, and *GPS* (Wellesley-Cambridge Press, 1997).

Location problem in Minkowski space-time

- Abel and Chaffee used Minkowskian algebra to state the location problem,
 - J. S. Abel, J. W. Chaffee, IEEE Trans. Aerosp. Electron. Syst. **27**, 952 (1991).
 - J. W. Chaffee, J. S. Abel, IEEE Trans. Aerosp. Electron. Syst. 30, 1021 (1994).

 In the case of the flat space-time, an explicit form of the solution of the location problem for arbitrary emitters motions is given by

• B. Coll, et al., Positioning systems in Minkowski spacetime: from emission to inertial coordinates, Class. Quantum Gravit. **27**, 065013 (2010).

Non-uniqueness of solutions: 'bifurcation problem'

- The non-uniqueness of the solutions in the location problem has been previously considered in connection with GPS,
 - R. O. Schmidt, A new approach to geometry range difference location, IEEE Trans. Aerospace & Electronic Systems 8, 821(1972).
 - J. S. Abel and J. W. Chaffee, Existence and uniqueness of GPS solutions, IEEE Trans. Aerospace & Electronic Systems 27, 952 (1991).
 - J. W. Chaffee and J. S. Abel, On the exact solutions of pseudorange equations IEEE Trans. Aerospace & Electronic Systems **30**, 1021 (1994).
 - E. W. Grafarend and J. Shan, A closed- form solution of the nonlinear pseudoranging equations (GPS), Artificial satellites, Planetary geodesy No 28 Special Issue on the XXX-th Anniversary of the Departament of Planetary Geodesy Vol 31 No 3 133-147 (Polish Academy of Sciences, Space Research Centre, Warszava 1996).

RPS: terminology

• Relativistic positioning system: set of four emitters A (A = 1, 2, 3, 4), of world-lines $\gamma_A(\tau^A)$, broadcasting their respective proper times τ^A by means of electromagnetic signals.

- Emission region of a RPS: set \mathcal{R} of events reached by the broadcast signals.
- Emission coordinates of P: ordered 4-tuple of proper times {\u03c64^A} received at P.
 - All the gradients $d\tau^A$ are light-like. This property determines the causal class of every relativistic emission coordinate system,

 $\{eeee, EEEEE, llll\}$

Relativistic emission coordinates with v < 1B.Coll et al., PRD **80**, 064038 (2009).

• The causal classes of the relativistic emission coordinate systems with v < 1 are of the form:

 $\{c_1 c_2 c_3 c_4, C_{12} C_{13} C_{14} C_{23} C_{24} C_{34}, e e e e\}$

• Depending on the different configurations of the stationary emitters and/or of the different values of the velocity v < 1, the relativistic emission coordinate systems may present spacetime regions of 102 different causal classes.

The 199 Causal Classes of Space – Time Frames

	eeee	leee	elee	teee	llee	tlee	ttee	llle	tlle	ttle	ttte	1111	t111	ttll	ttt1	tttt
eeee	EEEEEE LEEEEE TEEEEE LLEEEE TLEEEE TTEEEE LLLEE TLLEEE TTLEEE TTTEEE LLLLE TLLLEE TTLLEE TTTLEE TTTTEE LLLLE TTLLLE TTLLLE TTTLLE TTTLLE TTTTTE LLLLL TLLLL TLLLL TTTLLL TTTTLL TTTTTT	TTLEEE TTTEEE TTLEE TTLEE TTTLEE TTLTEE TTLETL TTTTEE TTLLE TTEELL TTTLE TTLTE TTLLE TTLETL TTTTE TTLTE TTLETT TTTTTE TTLLL TTTLL TTLLL TTLLL TTTLL TTLTL TTLLTT TTTTTL TTLTTT	 	TTTEEE TTTLEE TTTTEE TTTLLE TTTLE TTTTLE TTTLLIL TTTTLL TTTTLL TTTTLL	TTLTLE TTLLTE TTTTLE TTTTTE TTLTLL TTLLTL TTTTLL TTLLTT TTLTLT TTTTTL TTTTLT TTTTTT	TTTTLE TTTTTE TTTTLL TTTTLL TTTTLT TTTTLT	TTTTTE TTTTTL TTTTTTT	TTLTLL TTTTLL TTTTTL TTTTTTT	TTTTLL TTTTTL TTTTTTT	TTTTTL TTTTTT	TTTTT	TTTTT	TTTTT	TTTTT	TTTTT	TTTTT
leee	EEEEEE LEEEEE EEELEE TEEEEE LELEEE LEELEE EELLEE TLEEEE TEELEE EETLEE TTEEEE LLLEEE LLELEE LELLEE TLLEEE TLELEE TELLEE LETLEE TTLEEE TLLEE LLTLEE TTLLEE TLLEE TTTLEE	TTLEEE TTTEEE TTLLEE TTLELE TTTLEE	TEELLE TLELLE TLLLE TLLLE TTLLLE TTTLLE	TTTEEE TTTLEE	TTLLLE TTTLLE	TTTLLE										
teee	EEEEEE LEEEEE TEEEEE LLEEEE TLEEEE TTEEEE LLLEEE TLLEEE TTLEEE TTTEEE	TTLEEE TTTEEE		TTTEEE												
11 ee	EEEEEE LEEEEE ELEEEE TEEEEE LLEEEE EELLEE ELELEE TLEEEE LLELEE LELLEE TLELEE TELLEE	TLLEE TLLEE			TLLLLE											
tlee	EEEEEE LEEEEE ELEEEE TEEEEE LLEEEE TLEEEE	TLLEEE				-										
ttee	EEEEEE LEEEEE TEEEEE		-													
111e	EEEEEE LEEEEE LLEEEE LLELEE															
tll e	EEEEEE LEEEEE LLEEEE															
tt <mark>l</mark> e	EEEEEE LEEEEE															
ttte	EEEEE															
1111	EEEEE															
t111	EEEEE															
tt11	EEEEE															
ttt1	EEEEE															
tttt	EEEEE															

B. Coll and J. A. Morales, Int. Jour. Theor. Phys. **31**, 1045-1062 (1992).

Standard emission data set $\{\gamma_A(\tau^A), \{\tau^A\}\}$: Standard location problem

- Standard emission data set: $E \equiv \{\gamma_A(\tau^A), \{\tau^A\}\}$
 - the emitters world-lines (referred to a specific coordinate system $\{x^{\alpha}\}$) and the values of the emission coordinates received by a user.
- Standard location problem:
 - to find the coordinates $\{x^{\alpha}\}$ of the user from the sole data E.

$$x^{\alpha} = f(\tau^A, \gamma_A(\tau^A)) = \kappa^{\alpha}(\tau^A)$$
?

In a flat space-time, the standard location problem in RPS is the problem of finding (from the sole data E) the coordinate transformation $\kappa^{\alpha}(\tau^{A})$ from emission to inertial coordinates.

Quantities associated to the configuration of the emitters

- Configuration of the emitters for an event P: set of four events $\{\gamma_A(\tau^A)\}$ of the emitters at the emission times $\{\tau^A\}$ received at P.
 - Let us take the fourth emitter as the reference emitter,

$$e_a = m_4 - m_a = \gamma_a - \gamma_4$$
, $(a = 1, 2, 3)$.

- m_A ligth-like and future pointing
- Configuration scalars: $\Omega_a = \frac{1}{2}(e_a)^2$.
- Configuration vector: $\chi \equiv *(e_1 \wedge e_2 \wedge e_3).$
- Configuration bivector: $H \equiv *(\Omega_1 e_2 \wedge e_3 + \Omega_2 e_3 \wedge e_1 + \Omega_3 e_1 \wedge e_2).$

All these quantities are computable from the sole standard data $\{\gamma_A(\tau^A), \{\tau^A\}\}$.

Location problem in RPS CQG 27, 065013 (2010)

 Location problem: to determine the inertial coordinates of a user from a standard set of data.

The coordinate transformation $x = \kappa(\tau^A)$ is given by:

$$x = \gamma_4 + y_* - \frac{y_*^2}{(y_* \cdot \chi) + \hat{\epsilon}\sqrt{\Delta}} \chi$$

 $y_* = \frac{1}{\xi \cdot \chi} i(\xi) H$, ξ being any vector transversal to the configuration, $\xi \cdot \chi \neq 0$. $\Delta \equiv (y_* \cdot \chi)^2 - y_*^2 \chi^2 = -\frac{1}{2} H_{\mu\nu} H^{\mu\nu} \ge 0$

- y_* and Δ are computable from the standard data $E \equiv \{\gamma_A(\tau^A), \{\tau^A\}\}$.
- $\hat{\epsilon}$ is not always computable from the sole standard data E.

Orientation $\hat{\epsilon}$ of a RPS

- Characteristic emission function $\Theta : \mathcal{R} \to \mathbb{R}^4$, $\Theta(x) = (\tau^A)$, Θ is not a 1-1 map.
- Orientation of a RPS at the event x: sign of the Jacobian determinant of Θ at x,

$$\hat{\boldsymbol{\epsilon}} \equiv \operatorname{sgn} j_{\Theta}(x) = \operatorname{sgn}[*(d\tau^1 \wedge d\tau^2 \wedge d\tau^3 \wedge d\tau^4)].$$

- Zero Jacobian hypersurface: $\mathcal{J} \equiv \{x \mid j_{\Theta}(x) = 0\}.$
- Four null directions are linearly dependent iff the four space-like directions giving for any observer the relative propagation of light lie in a cone.

Then, J consists in those events for which any user at them can see the four emitters on a circle on its celestial sphere.

(B. Coll, J. M. Pozo, Salamanca-2005)

Emission coordinate region of a RPS

• Emission coordinate region (C = R - J): where Θ is invertible, $C = C_s \cup C_{\ell} \cup C_t$

 $\mathcal{C}_s \equiv \{x \in \mathcal{C} \mid \chi^2 < 0\}, \quad \mathcal{C}_{\ell} \equiv \{x \in \mathcal{C} \mid \chi^2 = 0\}, \quad \mathcal{C}_t \equiv \{x \in \mathcal{C} \mid \chi^2 > 0\}$

- From the sole standard emission data $E \equiv \{\gamma_A(\tau^A), \{\tau^A\}\}$, a user knows the configuration region $(\mathcal{C}_s, \mathcal{C}_\ell, \text{ or } \mathcal{C}_t)$ where he is.
- Central region of a RPS: $C^C \equiv C_s \cup C_\ell$
 - In the central region C^C , the orientation $\hat{\epsilon}$ of a relativistic positioning system is constant, and may be evaluated from the sole standard emission data E:

$$\forall x \in \mathcal{C}^C, \qquad \hat{\epsilon} = \operatorname{sgn}\left(u \cdot \chi\right)$$

where u is any future pointing time-like vector.

Observational rule to determine $\hat{\epsilon}$ at the user position

At any event of the emission coordinate region C, the orientation $\hat{\epsilon}$ can be obtained from the relative positions of the emitters on the celestial sphere of the user at this event. Denote by \vec{n}_A the unit vectors giving the relative directions of propagation of the signals.

- The orientation $\hat{\epsilon}$ of a relativistic positioning system is given by

$$\hat{\epsilon} = sgn\left[(1 - \vec{n}_4 \cdot \vec{L})(\vec{n}_1, \vec{n}_2, \vec{n}_3)\right]$$

where $\vec{L} \equiv \vec{L}^1 + \vec{L}^2 + \vec{L}^3$, with $\vec{L}^a = \frac{\epsilon^{abc} \vec{n}_b \times \vec{n}_c}{2(\vec{n}_1, \vec{n}_2, \vec{n}_3)}$, (a, b, c = 1, 2, 3).

Consider the oriented half-cone containing $\vec{n}_{1}, \vec{n}_{2} \text{ and } \vec{n}_{3}.$ If \vec{n}_{4} is in its interior, $\hat{\epsilon} = -sgn[(\vec{n}_{1}, \vec{n}_{2}, \vec{n}_{3})].$ $\vec{n}_{1}, \vec{n}_{2} \text{ and } \vec{n}_{3}.$ If \vec{n}_{4} is in its interior, $\hat{\epsilon} = -sgn[(\vec{n}_{1}, \vec{n}_{2}, \vec{n}_{3})].$ Application of the rule for $(\vec{n}_{1}, \vec{n}_{2}, \vec{n}_{3}) < 0.$

The relative positions of the emitters in the celestial sphere of a user are Lorentz invariant.

Location problem in RPS

Emission coordinate domains

• The emission coordinate region contains two coordinate domains:

$$\mathcal{C} = \mathcal{C}_s \cup \mathcal{C}_{\ell} \cup \mathcal{C}_t = \mathcal{C}^F \cup \mathcal{C}^B$$

which are called the front (\mathcal{C}^F) and the back (\mathcal{C}^B) emission coordinate domains.

• The border between these domains is the hypersurface $\mathcal{J} = \{x \mid j_{\Theta}(x) = 0\}$.

Timelike coordinate region:

$$\mathcal{C}_t = \mathcal{C}_t^F \cup \mathcal{C}^B, \quad \Theta(\mathcal{C}_t^F) = \Theta(\mathcal{C}^B)$$

Back emission coordinate domain:

$$\mathcal{C}^B = \mathcal{C}_t - \mathcal{C}_t^F$$

Front emission coordinate domain:

$$\mathcal{C}^F = \mathcal{C}_s \cup \mathcal{C}_\ell \cup \mathcal{C}_t^F$$

Central region: $\mathcal{C}^C = \mathcal{C}_s \cup \mathcal{C}_\ell$

Symmetric and stationary RPS in 3D

Location problem: relative formulation

• In practice, the location problem is formulated with respect to an (inertial) observer u, $u^2 = -1$. The unknown space-time position x of the user can be written as:

$$x = x^0 u + \vec{x}, \quad x^0 = -x \cdot u, \quad \vec{x} \cdot u = 0,$$

 $\{x^0, \vec{x}\}$ being the inertial components of x.

 Relatively to u, the standard location problem consists in finding the coordinate transformation from emission to inertial coordinates,

 $x^0(au^A)$ and $ec x(au^A)$

when the motions of the emitters are known in the inertial coordinate system.

• The position vectors γ_A of the emitters at the emission times split as,

$$\gamma_A = t_A u + \vec{\gamma}_A, \qquad (A = 1, 2, 3, 4)$$

where $t_A \equiv \gamma_A^0$ is the inertial time of the event $\gamma_A(\tau^A)$ measured by u.

Splitting of the configuration vector χ

 $\chi = (\vec{e}_1, \vec{e}_2, \vec{e}_3) \, u + \sigma_1 \, \vec{e}_2 \times \vec{e}_3 + \sigma_2 \, \vec{e}_3 \times \vec{e}_1 + \sigma_3 \, \vec{e}_1 \times \vec{e}_2$

• Relatively to u, the configuration vector is expressed as $\chi = \chi^0 u + \vec{\chi}$ with

$$\chi^0 = (\vec{e}_1, \vec{e}_2, \vec{e}_3), \qquad \vec{\chi} = \frac{1}{2} \epsilon^{abc} \sigma_a \, \vec{e}_b \times \vec{e}_c$$

where $\{\sigma_a, \vec{e}_a\}$ are the relative components of the position vectors of the referred emitters,

$$e_a = \gamma_a - \gamma_4 = \sigma_a u + \vec{e_a} \qquad (a = 1, 2, 3)$$

with $\sigma_a = t_a - t_4$ and $\vec{e}_a = \vec{\gamma}_a - \vec{\gamma}_4$.

- $|\chi^0|$: volume of the parallelepiped defined by the relative positions \vec{e}_a of the referred emitters.
- $\vec{\chi}$: weighted vector-area.

Splitting of the configuration bivector H $\vec{S} = \Omega_1 \vec{e}_2 \times \vec{e}_3 + \Omega_2 \vec{e}_3 \times \vec{e}_1 + \Omega_3 \vec{e}_1 \times \vec{e}_2$ $\vec{B} = \Omega_1 (-\sigma_2 \vec{e}_3 + \sigma_3 \vec{e}_2) + \Omega_2 (-\sigma_3 \vec{e}_1 + \sigma_1 \vec{e}_3) + \Omega_3 (-\sigma_1 \vec{e}_2 + \sigma_2 \vec{e}_1)$

The configuration bivector can be written as

 $H = u \wedge \vec{S} - *(u \wedge \vec{B}), \qquad \vec{S} \equiv -i(u)H, \quad \vec{B} \equiv -i(u)*H,$

with \vec{S} and \vec{B} as the electric and magnetic part of H relative to u.

• Algebraic invariants of *H*:

•
$$\Delta = -\frac{1}{2}H_{\mu\nu}H^{\mu\nu} = \vec{S}^2 - \vec{B}^2 \ge 0$$
, $sgn(\Delta) = sgn[(\chi \cdot m_4)^2]$.
• $H_{\mu\nu}(*H)^{\mu\nu} = 0 \implies \vec{S} \cdot \vec{B} = 0$.

• For an event $x \in \mathcal{R}$,

 $j_{\Theta}(x) = 0 \iff \Delta = 0 \iff \vec{S}^2 = \vec{B}^2 \iff H$ is a null bivector.

 \implies On the border \mathcal{J} , the location of a user may be unambiguously solved.

Splitting of the particular solution y_*

$$y_* = \frac{1}{D} \left(\vec{\xi} \cdot \vec{S} \ u + \vec{S} + \vec{\xi} \times \vec{B} \right)$$

• The transversal vector ξ can be always chosen so that $\xi^0 = 1$, $\xi = u + \vec{\xi}$, so that the transversality condition, $\xi \cdot \chi \neq 0$, is expressed as

$$D \equiv (\vec{e}_1, \vec{e}_2, \vec{e}_3) - \frac{1}{2} \epsilon^{abc} \sigma_a (\vec{\xi}, \vec{e}_b, \vec{e}_c) \neq 0.$$

- Relatively to an inertial observer u, the particular solution y_* orthogonal to $\xi=u+\vec{\xi}$ is given by

$$y_* = \frac{1}{D} \left(\vec{\xi} \cdot \vec{S} \ u + \vec{S} + \vec{\xi} \times \vec{B} \right)$$

where \vec{S} and \vec{B} are, respectively, the electric and magnetic parts of H (that are computed from \vec{e}_a).

Splitting of the solution $x = \gamma_4 + y_* + \lambda \chi$ $\lambda = \frac{-(y_*^0)^2 + \vec{y_*}^2}{(-y_*^0 \chi^0 + \vec{y_*} \cdot \vec{\chi}) + \hat{\epsilon} \sqrt{\vec{S^2} - \vec{B^2}}}$

and obtaining the orientation $\hat{\epsilon}$

• When $\chi^2 \leq 0$ there is a sole emission solution x. 'No bifurcation'

To obtain it, take $\hat{\epsilon} = sgn(u \cdot \chi)$ (where u is any future pointing time-like vector).

In particular, if u is an inertial observer,

$$\hat{\epsilon} = -sgn(\chi^0) = -sgn[(\vec{e}_1, \vec{e}_2, \vec{e}_3)],$$

When χ² > 0 there are two emission solutions, x and x' (conjugate events).
They only differ by their orientation *ϵ̂*.

The observational method allows us to determine $\hat{\epsilon}$, and then to obtain the solution corresponding to the real user (solving bifurcation).

Summary and ending comments

- The standard emission data set $\{\gamma_A(\tau^A), \{\tau^A\}\}$ is generically insufficient to locate a user of a positioning system in an inertial system.
 - The bifurcation problem appears in the time-like region, C_t , $(\chi^2 > 0)$.
 - The knowledge of the orientation in addition to the standard emission data set $\{\gamma_A(\tau^A), \{\tau^A\}\}$ solves completely the bifurcation problem.
- In current practical situations in present-day GNSS, the bifurcation problem may be solved by hand. If a user stays near the Earth surface the right solution is the nearest to the Earth radius.
 - However, in extended GNSS or more general positioning systems in the Solar System, the bifurcation problem cannot be so easily avoided.
- Among all the available 4-tuples of satellites of a GPS or Galileo constellation, the more appropriate one should minimize positioning errors avoiding bifurcation (next talk by D. Sáez and N. Puchades).