Workshop Relativistic Positioning Systems and their Scientific Applications Brdo near Kranj, Slovenia, 19-21 September 2012

From emission to inertial coordinates: Splitting of the solution relatively to an inertial observer

J. A. Morales-Lladosa

Departament d'Astronomia i Astrofísica Universitat de València

In collaboration with B.Coll and J. J. Ferrando

We consider Relativistic Positioning Systems (RPS) in Minkowski space-time, focussing the attention on:
(i) the location problem: to determine the inertial coordinates of a user from a standard set of data,
(ii) the bifurcation problem: to choose the true solution of the location problem when it admits two formal solutions,
(iii) the space and time splitting of the quantities providing the user location.

Location problem in Global Navigation Satellite Systems (GNSS)

GNSS

Satellite constellation

Emission equations:

$$
\begin{gathered}
c\left(t-t^{A}\right)=\left|\vec{x}-\vec{\gamma}_{A}\left(t^{A}\right)\right| \\
A=1,2,3,4, \ldots
\end{gathered}
$$

Data: $\left\{t^{A}, \vec{\gamma}_{A}\left(t^{A}\right)\right\}$ (in a specific terrestrial frame)

Unknowns: (t, \vec{x}) user location

- Iterative procedures.
- Numerical algorithms.
- Exact (and covariant) expression.

Confronting numerical and analytical approaches

$$
c\left(t-t^{A}\right)=\left|\vec{x}-\vec{\gamma}_{A}\left(t^{A}\right)\right|, \quad A=1,2,3,4
$$

- Iterative procedures:

$$
\vec{x}_{0} \underset{A=4}{\rightarrow} \quad t=t_{0} \underset{A=1,2,3}{\rightarrow} \quad \vec{x}_{1} \underset{A=4}{\rightarrow} \quad t=t_{1} \quad \rightarrow \quad \vec{x}_{2} \quad \rightarrow \ldots
$$

P. Delva, U. Kostić, and A. Čadez̆, J. Adv. Space Res. 47, 370 (2011).

- Numerical algorithms:
allowing to draw (t, \vec{x}) from $\left\{t^{A}, \vec{\gamma}_{A}\left(t^{A}\right)\right\}$
S. Bancroft, IEEE Trans. Aerosp. Electron. Syst. 21, 56 (1985).
L. O. Krause, ibid. 23, 225 (1987).
- Exact covariant expression $\quad \Longrightarrow \quad x^{\alpha}=f\left(t^{A}, \vec{\gamma}_{A}\left(t^{A}\right)\right)=\kappa^{\alpha}\left(t^{A}\right)$.
B.Coll et al. CQG 27, 065013 (2010).

Kleusberg's algorithm (1994). See G. Strang and K. Borre, Linear Algebra, Geodesy, and GPS (Wellesley-Cambridge Press, 1997).

Location problem in Minkowski space-time

- Abel and Chaffee used Minkowskian algebra to state the location problem,
- J. S. Abel, J. W. Chaffee, IEEE Trans. Aerosp. Electron. Syst. 27, 952 (1991).
- J. W. Chaffee, J. S. Abel, IEEE Trans. Aerosp. Electron. Syst. 30, 1021 (1994).

- In the case of the flat space-time, an explicit form of the solution of the location problem for arbitrary emitters motions is given by

$$
x=\gamma_{4}+y_{*}-\frac{y_{*}^{2} \chi}{\left(y_{*} \cdot \chi\right)+\hat{\epsilon} \sqrt{\left(y_{*} \cdot \chi\right)^{2}-y_{*}^{2} \chi^{2}}} \quad \chi \quad y_{*}
$$

- B. Coll, et al. , Positioning systems in Minkowski spacetime: from emission to inertial coordinates, Class. Quantum Gravit. 27, 065013 (2010).

Non-uniqueness of solutions: 'bifurcation problem'

- The non-uniqueness of the solutions in the location problem has been previously considered in connection with GPS,
- R. O. Schmidt, A new approach to geometry range difference location, IEEE Trans. Aerospace \& Electronic Systems 8, 821(1972).
- J. S. Abel and J. W. Chaffee, Existence and uniqueness of GPS solutions, IEEE Trans. Aerospace \& Electronic Systems 27, 952 (1991).
- J. W. Chaffee and J. S. Abel, On the exact solutions of pseudorange equations IEEE Trans. Aerospace \& Electronic Systems 30, 1021 (1994).
- E. W. Grafarend and J. Shan, A closed- form solution of the nonlinear pseudoranging equations (GPS), Artificial satellites, Planetary geodesy No 28 Special Issue on the XXX-th Anniversary of the Departament of Planetary Geodesy Vol 31 No 3 133-147 (Polish Academy of Sciences, Space Research Centre, Warszava 1996).

RPS: terminology

- Relativistic positioning system: set of four emitters $A(A=1,2,3,4)$, of world-lines $\gamma_{A}\left(\tau^{A}\right)$, broadcasting their respective proper times τ^{A} by means of electromagnetic signals.

- Emission region of a RPS: set \mathcal{R} of events reached by the broadcast signals.
- Emission coordinates of P : ordered 4-tuple of proper times $\left\{\tau^{A}\right\}$ received at P.
- All the gradients $d \tau^{A}$ are light-like.

This property determines the causal class of every relativistic emission coordinate system,

$\{$ eeee, EEEEEE, $l l l l\}$

Relativistic emission coordinates with $v<1$

B. Coll et al., PRD 80, 064038 (2009).

- The causal classes of the relativistic emission coordinate systems with $v<1$ are of the form:

$$
\left\{\mathrm{c}_{1} \mathrm{c}_{2} \mathrm{c}_{3} \mathrm{c}_{4}, \mathrm{C}_{12} \mathrm{C}_{13} \mathrm{C}_{14} \mathrm{C}_{23} \mathrm{C}_{24} \mathrm{C}_{34}, \text { e eee }\right\}
$$

- Depending on the different configurations of the stationary emitters and/or of the different values of the velocity $v<1$, the relativistic emission coordinate systems may present spacetime regions of 102 different causal classes.

The 199 Causal Classes of Space -Time Frames

	eeee	leee	elee	teee	11ee	tlee	ttee	111e	tlle	ttle	ttte	1111	tlll	ttll	tttl	tttt
eeee	feevee leeeee teeeve lleeee tleeee treeee llleee tlleee tTLeEe tTteee llllee tlulee tTLLEE tTtlee ttttee llulle tlllle trlule trtle tttile trtlel trttll tettrl tuttrt	tTleee ttreee trluee trlele ttulee tiltee tuletl tuttee tTLLLE TTLELL TTTLLE TTLTLE tTLLTE TTLETL TTTTLE TTLTTE tTLeTt tTtTTE TTLLLL tTTLLL ttletll trletl trttll trittl ttllet tttrtl trlitt tutttt		tTTEEE TTTLEE tTtTee ttille tTtTLE tTtTte tTTLLLL tTTTLL тTTTTL тTTTTT	tTLTLE TTLLTE TTTTLE TTTTTE TTLTLL TTLLTL tTTTLL TTLLTT tTllt Tt ttttil ттttlt tttttt	TTTTLE TTTTTE TTTTLL TTTTIL TTTTLT TTTTTT	$\begin{aligned} & \text { TTTTTE } \\ & \text { TTTTTL } \\ & \text { TTTTTTT } \end{aligned}$	ttitlla tTTTLL ттTTTI TTTTTT	ttttill tTTTTL ттттт	$\begin{aligned} & \mathbf{T r T H L} \\ & \text { т } \end{aligned}$	ттттTт	тTTTTT	ттттт	ттттTт	тTTTTT	ттTt't
leee	EEEEEE LeEeEe EEELEE TEEEEE leleee leelee eellee tleeee teelee eetlee treeee luleee Llelee lellee tuleee thelee tellee letlee thleee trelee tetlee trteee llllee tlulee litlee trllee tlulee ttilee	ttleee ttteee trliee trlele tttlee	teelle tLelle tTELLE TLLLLE TTLLLE tTTLLE	ttteee tttlee	ttille tttlie	ttrlile										
teee	Eeeeee Leeeee teeeee Lleeee theeee treeee llleee tlleee TTLEEE TTTEEE	ttleee ttteee		ttteee												
1lee	Eeeeee leeeee eleeee teeeee lleeee eellee elelee tleeee LLelee lellee tlelee tellee	thleee tlulee			tlille											
tlee	EeEeee Leeeee eleeee teeeee LLEEEE TLEEEE	tlieee														
ttee	Eeeeee leeeee teeeee															
111e	eeeeee leeeee lieeee lielee															
tlle	eeeeee leeeee lleeee															
ttle	eeeeee leeeee															
ttte	Eeeeee															
1111	eeeeee															
$t 111$	Eeeeee															
$t t 11$	Eeeees															
$t t t 1$	Eeeeee															
$t t t t$	eeeeee															

B. Coll and J. A. Morales, Int. Jour. Theor. Phys. 31, 1045-1062 (1992).

Standard emission data set $\left\{\gamma_{A}\left(\tau^{A}\right),\left\{\tau^{A}\right\}\right\}$:

- Standard emission data set: $E \equiv\left\{\gamma_{A}\left(\tau^{A}\right),\left\{\tau^{A}\right\}\right\}$
- the emitters world-lines (referred to a specific coordinate system $\left\{x^{\alpha}\right\}$) and the values of the emission coordinates received by a user.
- Standard location problem:
- to find the coordinates $\left\{x^{\alpha}\right\}$ of the user from the sole data E.

$$
x^{\alpha}=f\left(\tau^{A}, \gamma_{A}\left(\tau^{A}\right)\right)=\kappa^{\alpha}\left(\tau^{A}\right) ? ?
$$

In a flat space-time, the standard location problem in RPS is the problem of finding (from the sole data E) the coordinate transformation $\kappa^{\alpha}\left(\tau^{A}\right)$ from emission to inertial coordinates.

Quantities associated to the configuration of the emitters

- Configuration of the emitters for an event P : set of four events $\left\{\gamma_{A}\left(\tau^{A}\right)\right\}$ of the emitters at the emission times $\left\{\tau^{A}\right\}$ received at P.
- Let us take the fourth emitter as the reference emitter,

$$
e_{a}=m_{4}-m_{a}=\gamma_{a}-\gamma_{4}, \quad(a=1,2,3)
$$

$m_{A} \quad$ ligth-like and future pointing

- Configuration scalars: $\Omega_{a}=\frac{1}{2}\left(e_{a}\right)^{2}$.
- Configuration vector: $\chi \equiv *\left(e_{1} \wedge e_{2} \wedge e_{3}\right)$.
- Configuration bivector: $H \equiv *\left(\Omega_{1} e_{2} \wedge e_{3}+\Omega_{2} e_{3} \wedge e_{1}+\Omega_{3} e_{1} \wedge e_{2}\right)$.

All these quantities are computable from the sole standard data $\left\{\gamma_{A}\left(\tau^{A}\right),\left\{\tau^{A}\right\}\right\}$.

Location problem in RPS CQG 27, 065013 (2010)

- Location problem: to determine the inertial coordinates of a user from a standard set of data.

The coordinate transformation $x=\kappa\left(\tau^{A}\right)$ is given by:

$$
x=\gamma_{4}+y_{*}-\frac{y_{*}^{2}}{\left(y_{*} \cdot \chi\right)+\hat{\epsilon} \sqrt{\Delta}} \chi
$$

$y_{*}=\frac{1}{\xi \cdot \chi} i(\xi) H, \quad \xi$ being any vector transversal to the configuration, $\xi \cdot \chi \neq 0$.
$\Delta \equiv\left(y_{*} \cdot \chi\right)^{2}-y_{*}^{2} \chi^{2}=-\frac{1}{2} H_{\mu \nu} H^{\mu \nu} \geq 0$

- y_{*} and Δ are computable from the standard data $E \equiv\left\{\gamma_{A}\left(\tau^{A}\right),\left\{\tau^{A}\right\}\right\}$.
- $\hat{\epsilon}$ is not always computable from the sole standard data E.

Orientation $\hat{\epsilon}$ of a RPS

- Characteristic emission function $\Theta: \mathcal{R} \rightarrow \mathbb{R}^{4}, \Theta(x)=\left(\tau^{A}\right), \Theta$ is not a 1-1 map.
- Orientation of a RPS at the event x : sign of the Jacobian determinant of Θ at x,

$$
\hat{\epsilon} \equiv \operatorname{sgn} j_{\Theta}(x)=\operatorname{sgn}\left[*\left(d \tau^{1} \wedge d \tau^{2} \wedge d \tau^{3} \wedge d \tau^{4}\right)\right]
$$

- Zero Jacobian hypersurface: $\mathcal{J} \equiv\left\{x \mid j_{\Theta}(x)=0\right\}$.
- Four null directions are linearly dependent iff the four space-like directions giving for any observer the relative propagation of light lie in a cone.

- Then, \mathcal{J} consists in those events for which any user at them can see the four emitters on a circle on its celestial sphere.
(B. Coll, J. M. Pozo, Salamanca-2005)

Emission coordinate region of a RPS

- Emission coordinate region ($\mathcal{C}=\mathcal{R}-\mathcal{J}$): where Θ is invertible, $\mathcal{C}=\mathcal{C}_{s} \cup \mathcal{C}_{\ell} \cup \mathcal{C}_{t}$

$$
\mathcal{C}_{s} \equiv\left\{x \in \mathcal{C} \mid \chi^{2}<0\right\}, \quad \mathcal{C}_{\ell} \equiv\left\{x \in \mathcal{C} \mid \chi^{2}=0\right\}, \quad \mathcal{C}_{t} \equiv\left\{x \in \mathcal{C} \mid \chi^{2}>0\right\}
$$

- From the sole standard emission data $E \equiv\left\{\gamma_{A}\left(\tau^{A}\right),\left\{\tau^{A}\right\}\right\}$, a user knows the configuration region ($\mathcal{C}_{s}, \mathcal{C}_{\ell}$, or \mathcal{C}_{t}) where he is.
- Central region of a RPS: $\quad \mathcal{C}^{C} \equiv \mathcal{C}_{s} \cup \mathcal{C}_{\ell}$
- In the central region \mathcal{C}^{C}, the orientation $\hat{\epsilon}$ of a relativistic positioning system is constant, and may be evaluated from the sole standard emission data E :

$$
\forall x \in \mathcal{C}^{C}, \quad \hat{\epsilon}=\operatorname{sgn}(u \cdot \chi)
$$

where u is any future pointing time-like vector.

- At any event of the emission coordinate region \mathcal{C}, the orientation $\hat{\epsilon}$ can be obtained from the relative positions of the emitters on the celestial sphere of the user at this event.

Observational rule to determine $\hat{\epsilon}$ at the user position

At any event of the emission coordinate region \mathcal{C}, the orientation $\hat{\epsilon}$ can be obtained from the relative positions of the emitters on the celestial sphere of the user at this event.

Denote by \vec{n}_{A} the unit vectors giving the relative directions of propagation of the signals.

- The orientation $\hat{\epsilon}$ of a relativistic positioning system is given by

$$
\hat{\epsilon}=\operatorname{sgn}\left[\left(1-\vec{n}_{4} \cdot \vec{L}\right)\left(\vec{n}_{1}, \vec{n}_{2}, \vec{n}_{3}\right)\right]
$$

where $\vec{L} \equiv \vec{L}^{1}+\vec{L}^{2}+\vec{L}^{3}$, with $\vec{L}^{a}=\frac{\epsilon^{a b c} \vec{n}_{b} \times \vec{n}_{c}}{2\left(\vec{n}_{1}, \vec{n}_{2}, \vec{n}_{3}\right)}, \quad(a, b, c=1,2,3)$.

- Consider the oriented half-cone containing \vec{n}_{1}, \vec{n}_{2} and \vec{n}_{3}.
If \vec{n}_{4} is in its interior, $\hat{\epsilon}=-\operatorname{sgn}\left[\left(\vec{n}_{1}, \vec{n}_{2}, \vec{n}_{3}\right)\right]$.

Otherwise, $\hat{\epsilon}=\operatorname{sgn}\left[\left(\vec{n}_{1}, \vec{n}_{2}, \vec{n}_{3}\right)\right]$.
Application of the rule for $\left(\vec{n}_{1}, \vec{n}_{2}, \vec{n}_{3}\right)<0$.

- The relative positions of the emitters in the celestial sphere of a user are Lorentz invariant.
$P \in \mathcal{C}_{s} \cup \mathcal{C}_{\ell} \quad$ No bifurcation (central region)

$$
\chi^{2} \leq 0
$$

$$
\hat{\epsilon}=\operatorname{sgn}(u \cdot \chi)
$$

$\forall u$ future pointing time-like
 vector

$$
* *
$$

$P, P^{\prime} \in \mathcal{C}_{t} \quad$ Bifurcation (time-like coordinate region)

$$
\chi^{2}>0
$$

$\Theta(P)=\Theta\left(P^{\prime}\right) \quad$ 'conjugate events'
Observational rule $\rightarrow \hat{\epsilon}$ at the user position

Emission coordinate domains

- The emission coordinate region contains two coordinate domains:

$$
\mathcal{C}=\mathcal{C}_{s} \cup \mathcal{C}_{\ell} \cup \mathcal{C}_{t}=\mathcal{C}^{F} \cup \mathcal{C}^{B}
$$

which are called the front $\left(\mathcal{C}^{F}\right)$ and the back $\left(\mathcal{C}^{B}\right)$ emission coordinate domains.

- The border between these domains is the hypersurface $\mathcal{J}=\left\{x \mid j_{\Theta}(x)=0\right\}$.

Timelike coordinate region:

$$
\mathcal{C}_{t}=\mathcal{C}_{t}^{F} \cup \mathcal{C}^{B}, \quad \Theta\left(\mathcal{C}_{t}^{F}\right)=\Theta\left(\mathcal{C}^{B}\right)
$$

Back emission coordinate domain:

$$
\mathcal{C}^{B}=\mathcal{C}_{t}-\mathcal{C}_{t}^{F}
$$

Front emission coordinate domain:

$$
\mathcal{C}^{F}=\mathcal{C}_{s} \cup \mathcal{C}_{\ell} \cup \mathcal{C}_{t}^{F}
$$

Central region: $\mathcal{C}^{C}=\mathcal{C}_{s} \cup \mathcal{C}_{\ell}$

Location problem: relative formulation

- In practice, the location problem is formulated with respect to an (inertial) observer $u, u^{2}=-1$. The unknown space-time position x of the user can be written as:

$$
x=x^{0} u+\vec{x}, \quad x^{0}=-x \cdot u, \quad \vec{x} \cdot u=0,
$$

$\left\{x^{0}, \vec{x}\right\}$ being the inertial components of x.

- Relatively to u, the standard location problem consists in finding the coordinate transformation from emission to inertial coordinates,

$$
x^{0}\left(\tau^{A}\right) \quad \text { and } \quad \vec{x}\left(\tau^{A}\right)
$$

when the motions of the emitters are known in the inertial coordinate system.

- The position vectors γ_{A} of the emitters at the emission times split as,

$$
\gamma_{A}=t_{A} u+\vec{\gamma}_{A}, \quad(A=1,2,3,4)
$$

where $t_{A} \equiv \gamma_{A}^{0}$ is the inertial time of the event $\gamma_{A}\left(\tau^{A}\right)$ measured by u.

$$
\chi=\left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right) u+\sigma_{1} \vec{e}_{2} \times \vec{e}_{3}+\sigma_{2} \vec{e}_{3} \times \vec{e}_{1}+\sigma_{3} \vec{e}_{1} \times \vec{e}_{2}
$$

- Relatively to u, the configuration vector is expressed as $\chi=\chi^{0} u+\vec{\chi}$ with

$$
\chi^{0}=\left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right), \quad \vec{\chi}=\frac{1}{2} \epsilon^{a b c} \sigma_{a} \vec{e}_{b} \times \vec{e}_{c}
$$

where $\left\{\sigma_{a}, \vec{e}_{a}\right\}$ are the relative components of the position vectors of the referred emitters,

$$
e_{a}=\gamma_{a}-\gamma_{4}=\sigma_{a} u+\vec{e}_{a} \quad(a=1,2,3)
$$

with $\sigma_{a}=t_{a}-t_{4}$ and $\vec{e}_{a}=\vec{\gamma}_{a}-\vec{\gamma}_{4}$.

- $\left|\chi^{0}\right|$: volume of the parallelepiped defined by the relative positions \vec{e}_{a} of the referred emitters.
- $\vec{\chi}$: weighted vector-area.

Splitting of the configuration bivector H

$$
\begin{array}{r}
\vec{S}=\Omega_{1} \vec{e}_{2} \times \vec{e}_{3}+\Omega_{2} \vec{e}_{3} \times \vec{e}_{1}+\Omega_{3} \vec{e}_{1} \times \vec{e}_{2} \\
\vec{B}=\Omega_{1}\left(-\sigma_{2} \vec{e}_{3}+\sigma_{3} \vec{e}_{2}\right)+\Omega_{2}\left(-\sigma_{3} \vec{e}_{1}+\sigma_{1} \vec{e}_{3}\right)+\Omega_{3}\left(-\sigma_{1} \vec{e}_{2}+\sigma_{2} \vec{e}_{1}\right)
\end{array}
$$

- The configuration bivector can be written as

$$
H=u \wedge \vec{S}-*(u \wedge \vec{B}), \quad \vec{S} \equiv-i(u) H, \quad \vec{B} \equiv-i(u) * H
$$

with \vec{S} and \vec{B} as the electric and magnetic part of H relative to u.

- Algebraic invariants of H :
- $\Delta=-\frac{1}{2} H_{\mu \nu} H^{\mu \nu}=\vec{S}^{2}-\vec{B}^{2} \geq 0, \quad \operatorname{sgn}(\Delta)=\operatorname{sgn}\left[\left(\chi \cdot m_{4}\right)^{2}\right]$.
- $H_{\mu \nu}(* H)^{\mu \nu}=0 \quad \Longrightarrow \quad \vec{S} \cdot \vec{B}=0$.
- For an event $x \in \mathcal{R}$,

$$
j_{\Theta}(x)=0 \Longleftrightarrow \Delta=0 \Longleftrightarrow \vec{S}^{2}=\vec{B}^{2} \Longleftrightarrow H \text { is a null bivector. }
$$

\Longrightarrow On the border \mathcal{J}, the location of a user may be unambiguously solved.

Splitting of the particular solution y_{*}

$$
y_{*}=\frac{1}{D}(\vec{\xi} \cdot \vec{S} u+\vec{S}+\vec{\xi} \times \vec{B})
$$

- The transversal vector ξ can be always chosen so that $\xi^{0}=1, \xi=u+\vec{\xi}$, so that the transversality condition, $\xi \cdot \chi \neq 0$, is expressed as

$$
D \equiv\left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right)-\frac{1}{2} \epsilon^{a b c} \sigma_{a}\left(\vec{\xi}, \vec{e}_{b}, \vec{e}_{c}\right) \neq 0 .
$$

- Relatively to an inertial observer u, the particular solution y_{*} orthogonal to $\xi=u+\vec{\xi}$ is given by

$$
y_{*}=\frac{1}{D}(\vec{\xi} \cdot \vec{S} u+\vec{S}+\vec{\xi} \times \vec{B})
$$

where \vec{S} and \vec{B} are, respectively, the electric and magnetic parts of H (that are computed from \vec{e}_{a}).

Splitting of the solution $x=\gamma_{4}+y_{*}+\lambda \chi$

$$
\lambda=\frac{-\left(y_{*}^{0}\right)^{2}+\vec{y}_{*}^{2}}{\left(-y_{*}^{0} \chi^{0}+\vec{y}_{*} \cdot \vec{\chi}\right)+\hat{\epsilon} \sqrt{\vec{S}^{2}-\vec{B}^{2}}}
$$

and obtaining the orientation $\hat{\epsilon}$

- When $\chi^{2} \leq 0$ there is a sole emission solution x. 'No bifurcation'

To obtain it, take $\hat{\epsilon}=\operatorname{sgn}(u \cdot \chi)$ (where u is any future pointing time-like vector).
In particular, if u is an inertial observer,

$$
\hat{\epsilon}=-\operatorname{sgn}\left(\chi^{0}\right)=-\operatorname{sgn}\left[\left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right)\right],
$$

- When $\chi^{2}>0$ there are two emission solutions, x and x^{\prime} (conjugate events). They only differ by their orientation $\hat{\epsilon}$.
The observational method allows us to determine $\hat{\epsilon}$, and then to obtain the solution corresponding to the real user (solving bifurcation).

Summary and ending comments

- The standard emission data set $\left\{\gamma_{A}\left(\tau^{A}\right),\left\{\tau^{A}\right\}\right\}$ is generically insufficient to locate a user of a positioning system in an inertial system.
- The bifurcation problem appears in the time-like region, $\mathcal{C}_{t},\left(\chi^{2}>0\right)$.
- The knowledge of the orientation in addition to the standard emission data set $\left\{\gamma_{A}\left(\tau^{A}\right),\left\{\tau^{A}\right\}\right\}$ solves completely the bifurcation problem.
- In current practical situations in present-day GNSS, the bifurcation problem may be solved by hand. If a user stays near the Earth surface the right solution is the nearest to the Earth radius.
- However, in extended GNSS or more general positioning systems in the Solar System, the bifurcation problem cannot be so easily avoided.
- Among all the available 4-tuples of satellites of a GPS or Galileo constellation, the more appropriate one should minimize positioning errors avoiding bifurcation (next talk by D. Sáez and N. Puchades).

