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Outline

We consider Relativistic Positioning Systems (RPS) in Minkowski space-time,
focussing the attention on:

(i) the location problem: to determine the inertial coordinates of a user from a
standard set of data,

(ii) the bifurcation problem: to choose the true solution of the location problem
when it admits two formal solutions,

(iii) the space and time splitting of the quantities providing the user location.
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Location problem in Global Navigation Satellite Systems (GNSS)

GNSS

Satellite constellation

Emission equations:

c(t− tA) = |~x− ~γA(tA)|

A = 1, 2, 3, 4, ...

Data: {tA, ~γA(tA)}
(in a specific terrestrial frame)

Unknowns: (t, ~x) user location

Iterative procedures.

Numerical algorithms.

Exact (and covariant) expression.
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Confronting numerical and analytical approaches

c(t− tA) = |~x− ~γA(tA)|, A = 1, 2, 3, 4

Iterative procedures:

~x0 → t = t0 → ~x1 → t = t1 → ~x2 → ...
A = 4 A = 1, 2, 3 A = 4 A = 1, 2, 3

P. Delva, U. Kostić, and A. C̆adez̆, J. Adv. Space Res. 47, 370 (2011).

Numerical algorithms:

allowing to draw (t, ~x) from {tA, ~γA(tA)}
S. Bancroft, IEEE Trans. Aerosp. Electron. Syst. 21, 56 (1985).

L. O. Krause, ibid. 23, 225 (1987).

Exact covariant expression =⇒ xα = f(tA, ~γA(tA)) = κα(tA).

B.Coll et al. CQG 27, 065013 (2010).

Kleusberg’s algorithm (1994). See G. Strang and K. Borre, Linear Algebra, Geodesy,

and GPS (Wellesley-Cambridge Press, 1997).
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Location problem in Minkowski space-time

Abel and Chaffee used Minkowskian algebra to state the location problem,

• J. S. Abel, J. W. Chaffee, IEEE Trans. Aerosp.
Electron. Syst. 27, 952 (1991).

• J. W. Chaffee, J. S. Abel, IEEE Trans. Aerosp.
Electron. Syst. 30, 1021 (1994).

γ(τ)

γ(τ)

γ(τ) γ(τ)

In the case of the flat space-time, an explicit form of the solution of the
location problem for arbitrary emitters motions is given by

x = γ4+y∗−
y2
∗ χ

(y∗ · χ) + ε̂
√

(y∗ · χ)2 − y2
∗χ

2

χ y∗

ε̂

• B. Coll, et al. , Positioning systems in Minkowski spacetime: from emission to
inertial coordinates, Class. Quantum Gravit. 27, 065013 (2010).
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Non-uniqueness of solutions: ’bifurcation problem’

The non-uniqueness of the solutions in the location problem has been pre-
viously considered in connection with GPS,

• R. O. Schmidt, A new approach to geometry range difference location, IEEE Trans.
Aerospace & Electronic Systems 8, 821(1972).

• J. S. Abel and J. W. Chaffee, Existence and uniqueness of GPS solutions, IEEE
Trans. Aerospace & Electronic Systems 27, 952 (1991).

• J. W. Chaffee and J. S. Abel, On the exact solutions of pseudorange equations
IEEE Trans. Aerospace & Electronic Systems 30, 1021 (1994).

• E. W. Grafarend and J. Shan, A closed- form solution of the nonlinear pseudo-
ranging equations (GPS), Artificial satellites, Planetary geodesy No 28 Special
Issue on the XXX-th Anniversary of the Departament of Planetary Geodesy Vol
31 No 3 133-147 (Polish Academy of Sciences, Space Research Centre, Warszava
1996).
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RPS: terminology

Relativistic positioning system: set of four
emitters A (A = 1, 2, 3, 4), of world-lines
γA(τA), broadcasting their respective proper
times τA by means of electromagnetic signals.

γ(τ)

γ(τ)

γ(τ) γ(τ)

Emission region of a RPS: set R of events reached by the broadcast signals.

Emission coordinates of P : ordered 4-tuple of proper
times {τA} received at P .

• All the gradients dτA are light-like.

This property determines the causal class of
every relativistic emission coordinate system,

{e e e e ,E E E E E E, l l l l}

P

γ γ
γ γ

3
4

2
1

τ
ττ

τ
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Relativistic emission coordinates with v < 1
B.Coll et al., PRD 80, 064038 (2009).

The causal classes of the relativistic emission coordinate systems with v < 1
are of the form:

{c1 c2 c3 c4, C12 C13 C14 C23 C24 C34, e e e e}

Depending on the different configurations of the stationary
emitters and/or of the different values of the velocity v < 1,
the relativistic emission coordinate systems may present space-
time regions of 102 different causal classes. A

D

C

B

sAB

sBA

iAB

eeee                         leee teee           llee

tlee

                                                                 elee                                  tlee    ttee    llle    tlle    ttle    ttte    llll    tlll    ttll    tttl    tttt 

      EEEEEE LEEEEE TEEEEE LLEEEE  TTLEEE TTTEEE TTLLEE TTLELE          TTTEEE TTTLEE  TTLTLE TTLLTE  TTTTLE  TTTTTE  TTLTLL  TTTTLL  TTTTTL  TTTTTT  TTTTTT  TTTTTT  TTTTTT  TTTTTT  TTTTTT
      TLEEEE TTEEEE LLLEEE TLLEEE  TTTLEE TTLTEE TTLETL TTTTEE          TTTTEE TTTLLE  TTTTLE TTTTTE  TTTTTE  TTTTTL  TTTTLL  TTTTTL  TTTTTT                                                
      TTLEEE TTTEEE LLLLEE TLLLEE  TTLLLE TTLELL TTTLLE TTLTLE          TTTTLE TTTTTE  TTLTLL TTLLTL  TTTTLL  TTTTTT  TTTTTL  TTTTTT                                                        
eeee  TTLLEE TTTLEE TTTTEE LLLLLE  TTLLTE TTLETL TTTTLE TTLTTE          TTTLLL TTTTLL  TTTTLL TTLLTT  TTTTTL          TTTTTT                                                                
      TLLLLE TTLLLE TTTLLE TTTTLE  TTLETT TTTTTE TTLLLL TTTLLL          TTTTTL TTTTTT  TTLTLT TTTTTL  TTTTLT                                                                                
      TTTTTE LLLLLL TLLLLL TTLLLL  TTLTLL TTLLTL TTTTLL TTLTTL                         TTTTLT TTTTTT  TTTTTT                                                                                
      TTTLLL TTTTLL TTTTTL TTTTTT  TTLLTT TTTTTL TTLTTT TTTTTT                                                                                                                              

      EEEEEE LEEEEE EEELEE TEEEEE  TTLEEE TTTEEE TTLLEE TTLELE  TEELLE  TTTEEE TTTLEE  TTLLLE TTTLLE  TTTLLE                                                                                
      LELEEE LEELEE EELLEE TLEEEE  TTTLEE                       TLELLE                                                                                                                      
      TEELEE EETLEE TTEEEE LLLEEE                               TTELLE                                                                                                                      
leee  LLELEE LELLEE TLLEEE TLELEE                               TLLLLE                                                                                                                      
      TELLEE LETLEE TTLEEE TTELEE                               TTLLLE                                                                                                                      
      TETLEE TTTEEE LLLLEE TLLLEE                               TTTLLE                                                                                                                      
      LLTLEE TTLLEE TLTLEE TTTLEE                                                                                                                                                           

      EEEEEE LEEEEE TEEEEE LLEEEE  TTLEEE TTTEEE                        TTTEEE                                                                                                              
teee  TLEEEE TTEEEE LLLEEE TLLEEE                                                                                                                                                           
      TTLEEE TTTEEE                                                                                                                                                                         

      EEEEEE LEEEEE ELEEEE TEEEEE  TLLEEE TLLLEE                                       TLLLLE                                                                                               
llee  LLEEEE EELLEE ELELEE TLEEEE                                                                                                                                                           
      LLELEE LELLEE TLELEE TELLEE                                                                                                                                                           

      EEEEEE LEEEEE ELEEEE TEEEEE  TLLEEE                                                                                                                                                   
      LLEEEE TLEEEE                                                                                                                                                                         

ttee  EEEEEE LEEEEE TEEEEE                                                                                                                                                                  

llle  EEEEEE LEEEEE LLEEEE LLELEE                                                                                                                                                           

tlle  EEEEEE LEEEEE LLEEEE                                                                                                                                                                  

ttle  EEEEEE LEEEEE                                                                                                                                                                         

ttte  EEEEEE                                                                                                                                                                                

llll  EEEEEE                                                                                                                                                                                

tlll  EEEEEE                                                                                                                                                                                

ttll  EEEEEE                                                                                                                                                                                

tttl  EEEEEE                                                                                                                                                                                

tttt  EEEEEE                                                                                                                                                                                

From emission to inertial coordinates: Splitting of the solution relatively to an inertial observer. Brdo near Kranj RPS-workshop, 2012 8



The 199 Causal Classes of Space –Time Frames
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B. Coll and J. A. Morales, Int. Jour. Theor. Phys. 31, 1045-1062 (1992).
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Standard emission data set {γA(τA), {τA}}:
Standard location problem

Standard emission data set: E ≡ {γA(τA), {τA}}

• the emitters world-lines (referred to a specific coordinate system {xα})
and the values of the emission coordinates received by a user.

Standard location problem:

• to find the coordinates {xα} of the user from the sole data E.

xα = f(τA, γA(τA)) = κα(τA)??

In a flat space-time, the standard location problem in RPS is the problem of finding

(from the sole data E) the coordinate transformation κα(τA) from emission to inertial

coordinates.
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Quantities associated to the configuration of the emitters

Configuration of the emitters for an event P : set of four events {γA(τA)}
of the emitters at the emission times {τA} received at P .

Let us take the fourth emitter as the reference
emitter,

ea = m4 −ma = γa − γ4 , (a = 1, 2, 3).

mA ligth-like and future pointing

x
τ

O

P

m

γ  (τ  )

4

a

a

a

γ

a
o

γ  (τ  )4
4

4m

aγ

o

o e aτ4

Configuration scalars: Ωa = 1
2 (ea)2.

Configuration vector: χ ≡ ∗(e1 ∧ e2 ∧ e3).

Configuration bivector: H ≡ ∗(Ω1 e2 ∧ e3 + Ω2 e3 ∧ e1 + Ω3 e1 ∧ e2).

All these quantities are computable from the sole standard data {γA(τA), {τA}}.
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Location problem in RPS CQG 27, 065013 (2010)

Location problem: to determine the inertial coordinates of a user from a
standard set of data.

The coordinate transformation x = κ(τA) is given by:

x = γ4 + y∗ −
y2
∗

(y∗ · χ) + ε̂
√

∆
χ

y∗ =
1

ξ · χ
i(ξ)H, ξ being any vector transversal to the configuration, ξ · χ 6= 0.

∆ ≡ (y∗ · χ)2 − y2
∗χ

2 = − 1
2HµνH

µν ≥ 0

y∗ and ∆ are computable from the standard data E ≡ {γA(τA), {τA}}.

ε̂ is not always computable from the sole standard data E.
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Orientation ε̂ of a RPS

Characteristic emission function Θ : R→ R4, Θ(x) = (τA), Θ is not a 1-1 map.

Orientation of a RPS at the event x: sign of the Jacobian determinant of Θ at x,

ε̂ ≡ sgn jΘ(x) = sgn[∗(dτ1 ∧ dτ2 ∧ dτ3 ∧ dτ4)].

Zero Jacobian hypersurface: J ≡ {x | jΘ(x) = 0}.

Four null directions are linearly dependent iff the
four space-like directions giving for any observer
the relative propagation of light lie in a cone.

Then, J consists in those events for which any
user at them can see the four emitters on a
circle on its celestial sphere.

(B. Coll, J. M. Pozo, Salamanca-2005)
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Emission coordinate region of a RPS

Emission coordinate region (C = R−J ): where Θ is invertible, C = Cs ∪ C` ∪ Ct

Cs ≡ {x ∈ C |χ2 < 0}, C` ≡ {x ∈ C|χ2 = 0}, Ct ≡ {x ∈ C |χ2 > 0}

• From the sole standard emission data E ≡ {γA(τA), {τA}}, a user knows

the configuration region (Cs, C`, or Ct) where he is.

Central region of a RPS: CC ≡ Cs ∪ C`

• In the central region CC , the orientation ε̂ of a relativistic positioning system
is constant, and may be evaluated from the sole standard emission data E:

∀x ∈ CC , ε̂ = sgn (u · χ)

where u is any future pointing time-like vector.

At any event of the emission coordinate region C, the orientation ε̂ can be obtained

from the relative positions of the emitters on the celestial sphere of the user at

this event.

From emission to inertial coordinates: Splitting of the solution relatively to an inertial observer. Brdo near Kranj RPS-workshop, 2012 14



Observational rule to determine ε̂ at the user position

At any event of the emission coordinate region C, the orientation ε̂ can be obtained from

the relative positions of the emitters on the celestial sphere of the user at this event.

Denote by ~nA the unit vectors giving the relative directions of propagation of the signals.

The orientation ε̂ of a relativistic positioning system is given by

ε̂ = sgn [(1− ~n4 · ~L)(~n1, ~n2, ~n3)]

where ~L ≡ ~L1 + ~L2 + ~L3, with ~La =
εabc~nb × ~nc
2(~n1, ~n2, ~n3)

, (a, b, c = 1, 2, 3).

Consider the oriented half-cone containing
~n1, ~n2 and ~n3.

If ~n4 is in its interior, ε̂ = −sgn[(~n1, ~n2, ~n3)].

Otherwise, ε̂ = sgn[(~n1, ~n2, ~n3)].

1

2

3

1

2

3

1

2

3

4 4

4

ε = + 1 ε = − 1ε = 0^ ^^

Application of the rule for (~n1, ~n2, ~n3) < 0.

The relative positions of the emitters in the celestial
sphere of a user are Lorentz invariant.
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Location problem in RPS

P ∈ Cs∪C` No bifurcation
(central region)

χ2 ≤ 0

ε̂ = sgn(u · χ)

∀u future pointing time-like

vector

Γ

time-likeP

y
*

4γ

χ

χ

bγ
aγ

S 

Γ
ξ

χ

χ null
bγ

aγ
4γ

P

y
*

P 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

P, P ′ ∈ Ct Bifurcation
(time-like coordinate region)

χ2 > 0

Θ(P ) = Θ(P ′) ’conjugate events’

Observational rule → ε̂ at the user position

Γ

χ space-like
P P’y

*
χ

bγ

aγ
4γ

H 
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Emission coordinate domains

The emission coordinate region contains two coordinate domains:

C = Cs ∪ C` ∪ Ct = CF ∪ CB

which are called the front (CF ) and the back (CB) emission coordinate domains.

The border between these domains is the hypersurface J = {x | jΘ(x) = 0}.

Timelike coordinate region:

Ct = CFt ∪ CB , Θ(CFt ) = Θ(CB)

Back emission coordinate domain:

CB = Ct − CFt

Front emission coordinate domain:

CF = Cs ∪ C` ∪ CFt

Central region: CC = Cs ∪ C`

C l

Cs

J
C B

C F
t

1γ

3γ

2γ γ’

γ

Symmetric and stationary RPS in 3D

From emission to inertial coordinates: Splitting of the solution relatively to an inertial observer. Brdo near Kranj RPS-workshop, 2012 17



Location problem: relative formulation

In practice, the location problem is formulated with respect to an (inertial) observer
u, u2 = −1. The unknown space-time position x of the user can be written as:

x = x0u+ ~x, x0 = −x · u, ~x · u = 0,

{x0, ~x} being the inertial components of x.

Relatively to u, the standard location problem consists in finding the coordinate
transformation from emission to inertial coordinates,

x0(τA) and ~x(τA)

when the motions of the emitters are known in the inertial coordinate system.

The position vectors γA of the emitters at the emission times split as,

γA = tAu+ ~γA, (A = 1, 2, 3, 4)

where tA ≡ γ0
A is the inertial time of the event γA(τA) measured by u.
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Splitting of the configuration vector χ

χ = (~e1, ~e2, ~e3)u+ σ1 ~e2 × ~e3 + σ2 ~e3 × ~e1 + σ3 ~e1 × ~e2

Relatively to u, the configuration vector is expressed as χ = χ0u+ ~χ with

χ0 = (~e1, ~e2, ~e3), ~χ =
1

2
εabcσa ~eb × ~ec

where {σa, ~ea} are the relative components of the position vectors of the
referred emitters,

ea = γa − γ4 = σau+ ~ea (a = 1, 2, 3)

with σa = ta − t4 and ~ea = ~γa − ~γ4.

• |χ0|: volume of the parallelepiped defined by the relative positions ~ea
of the referred emitters.

• ~χ: weighted vector-area.
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Splitting of the configuration bivector H

~S = Ω1 ~e2 × ~e3 + Ω2 ~e3 × ~e1 + Ω3 ~e1 × ~e2

~B = Ω1(−σ2~e3 + σ3~e2) + Ω2(−σ3~e1 + σ1~e3) + Ω3(−σ1~e2 + σ2~e1)

The configuration bivector can be written as

H = u ∧ ~S − ∗(u ∧ ~B), ~S ≡ −i(u)H, ~B ≡ −i(u) ∗H,

with ~S and ~B as the electric and magnetic part of H relative to u.

Algebraic invariants of H:

• ∆ = − 1
2HµνH

µν = ~S2 − ~B2 ≥ 0, sgn (∆) = sgn [(χ ·m4)2].

• Hµν(∗H)µν = 0 =⇒ ~S · ~B = 0.

For an event x ∈ R,

jΘ(x) = 0 ⇐⇒ ∆ = 0 ⇐⇒ ~S2 = ~B2 ⇐⇒ H is a null bivector.

=⇒ On the border J , the location of a user may be unambiguously solved.
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Splitting of the particular solution y∗

y∗ = 1
D

(~ξ · ~S u+ ~S + ~ξ × ~B)

The transversal vector ξ can be always chosen so that ξ0 = 1, ξ = u+ ~ξ,
so that the transversality condition, ξ · χ 6= 0, is expressed as

D ≡ (~e1, ~e2, ~e3)− 1

2
εabcσa (~ξ,~eb, ~ec) 6= 0.

Relatively to an inertial observer u, the particular solution y∗ orthogonal to
ξ = u+ ~ξ is given by

y∗ =
1

D
(~ξ · ~S u+ ~S + ~ξ × ~B)

where ~S and ~B are,respectively, the electric and magnetic parts of H (that
are computed from ~ea).
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Splitting of the solution x = γ4 + y∗ + λχ

λ =
−(y0

∗)
2 + ~y 2

∗

(−y0
∗χ

0 + ~y∗ · ~χ) + ε̂
√
~S2 − ~B2

and obtaining the orientation ε̂

When χ2 ≤ 0 there is a sole emission solution x. ’No bifurcation’

To obtain it, take ε̂ = sgn(u · χ) (where u is any future pointing time-like
vector).

In particular, if u is an inertial observer,

ε̂ = −sgn(χ0) = −sgn[(~e1, ~e2, ~e3)],

When χ2 > 0 there are two emission solutions, x and x′ (conjugate events).

They only differ by their orientation ε̂.

The observational method allows us to determine ε̂, and then to obtain the
solution corresponding to the real user (solving bifurcation).
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Summary and ending comments

The standard emission data set {γA(τA), {τA}} is generically insufficient to locate
a user of a positioning system in an inertial system.

• The bifurcation problem appears in the time-like region, Ct, (χ2 > 0).

• The knowledge of the orientation in addition to the standard emission data
set {γA(τA), {τA}} solves completely the bifurcation problem.

In current practical situations in present-day GNSS, the bifurcation problem may
be solved by hand. If a user stays near the Earth surface the right solution is the
nearest to the Earth radius.

• However, in extended GNSS or more general positioning systems in the Solar
System, the bifurcation problem cannot be so easily avoided.

Among all the available 4-tuples of satellites of a GPS or Galileo constellation,
the more appropriate one should minimize positioning errors avoiding bifurcation
(next talk by D. Sáez and N. Puchades).
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