

Workshop - Relativistic Positioning Systems and their Scientific Applications Brdo near Kranj, Slovenia September 2012, 19-21st

Pacôme DELVA

Metrology

- Toward a new definition of the second
- Improving the timescale
- Going in space
- Geodesy
 - Relativistic geodesy
 - Using clocks to measure the geopotential
 - The relativistic geoid

Metrology

- Toward a new definition of the second
- Improving the timescale
- Going in space
- Geodesy
 - Relativistic geodesy
 - Using clocks to measure the geopotential
 - The relativistic geoid

$$\hbar\omega_{ef} = E_e - E_f$$

$$|e\rangle$$

$$|f\rangle$$

$$\omega(t) = \omega_{ef} \times (1 + \epsilon + y(t))$$

ε : fractional frequency offset
<u>Accuracy</u>: overall uncertainty on ε
y(t) : fractional frequency
fluctuations
<u>Stability</u>: statistical properties of
w(t) = page stariged by the Aller

<u>Stability</u>: statistical properties of y(t), characterized by the Allan variance

Definition and realization of the second: Cs fountain

interrogation

selection

capture

detection

- CGPM 1967 : « the second is the duration of 9192631770 periods of the radiation corresponding to the transition between two hyperfine levels of the ground state of the caesium 133 »
- Cs fountains :
 - Primary Frequency Standards (PSF), only a few worldwide
 - Accuracy (relative frequency error) : $2-3 * 10^{-16}$
 - Stability : few $10^{-14}/\sqrt{\tau}$, i.e. around 10^{-16} @ 1d
 - Local frequency comparisons effectively achieve such noise levels

Optical clocks : toward new frequency standards

- 4.5 * 10⁻¹⁵/√τ
- Goes below 10⁻¹⁶ after 1000 s
 (J. Lodewyck et al.)

• Single ion clock :

- Very few interaction with the trap \rightarrow good accuracy
- Al+ NIST : $9 * 10^{-18}$
- Stability (~3*10⁻¹⁵/ $\sqrt{\tau}$) limited by the shot noise (only one ion)
- Developments
 - NIST : Al+, Al+, Hg+
 - Europe : PTB, NPL, ...
 - France : Provence University (Ca+)

• Intense trap but controlled

- Accuracy ~ 2 * 10^{-16} but in constant improvement
- High number of atoms $(10^4) \rightarrow$ good ultimate stability (actually $\sim 2*10^{-15}/\sqrt{\tau}$)
- Developments

Neutral atoms

- Sr : Tokyo, JILA, SYRTE, PTB
- Yb : NIST, NMIJ, INRIM
- Hg : SYRTE

- Optical clocks have reached an accuracy better than the Cs fontain clocks
- They could be used as secondary representations of the second, to help characterizing the Primary Frequency Standards
- Their uncertainty cannot be better than the one of Cs fountains
- Possible future redefinition of the second
 - \rightarrow Period of preparation and study of different standards
 - \rightarrow Need to compare these secondary representations of the second at a challenging level

We need better links

Intermède: basic principle of a time transfer link

$$\Delta \tau^B \left(\tau^B(t_4) \right) = \tau^B(t_5) - \tau^B(t_4)$$
$$= \tau^A(t_1) - \tau^B(t_4)$$

- Current long distance global comparison methods
 - GNSS-based techniques
 - TWSTFT (using telecomms satellites)
- Performances
 - Frequency comparison stability : $< 10^{-15} @ 1 \text{ day}$
 - Proportional to $1/\tau$
 - $\rightarrow \sim 10$ days to compare 2 fountains

! 2-3 order of magnitudes improvement needed !

IEN-OP comparison with 3 techniques (GPS code, GPS phase TWSTFT) (Bauch et al., Metrologia 2006)

Long distance fibre optical links

- 100-1000 km links demonstrated, e.g. Braunschweig-Munich 900 km
- ~ 10^{-19} stability @ 1 day
- Continental scales only
- Intensive development going on
- Europe-wide network project NEAT-TF
- Fibre costs : using existing fibres dedicated to research

- T2L2 : Time Transfer by Laser Link
 - Launched on Jason-2 in 2008
 - Results consistent with objective of < $10^{\mbox{-}16}$ @ 1 day
- ACES mission Atomic Clock Ensemble in Space (2015)
 - Micro Wave Link (MWL)
 - Expected stability ~ $10^{\text{-16}}$ @ 1 day and < $10^{\text{-16}}$ @ 10 day
 - Always visible
- STE-QUEST mission Space-Time Explorer and QUantum Equivalence principle teST (2022)
 - Coherent laser link
- Galileo Evolution : GNSS+ & ADVISE
 - See talk by F. Amarillo Fernandez tomorrow
 - Inter-satellite links in Galileo aiming at 1 cm accuracy on orbit determination and < ns accuracy on synchronization
 - Implication on ground clock frequency comparison ???

TAI : Temps Atomique International

- Useful timescale (coordinate timescale) :
 - Realize the unit (=second)
 - Continuous time reference
- Reference : Temps Atomique International (TAI) : timescale calculated by BIPM using ~250 clocks in more than 50 countries → frequency stability, robustness, accuracy, ...

- TAI unit (the second) is corrected by steering the frequency to the one of Caesium fountains (Primary Frequency Standards)
- TAI is independent from Earth rotation : UTC = TAI 34 secondes
- Clocks participating to TAI are compared with satellite time transfer

Clock syntonization

Table 1. Effects on syntonization with respect to TCG of clocks on the Earth's surface; Orders of magnitude and uncertainties of the corrections

Effect	Order of magnitude	Uncertainty
Earth's gravitational potential Centrifugal potential $(v^2/2/c^2)$	7×10^{-10} 1×10^{-12}	10^{-17} < 10^{-18}
Volcanic and coseismic (highly localised)	< 10 ⁻¹⁶	?
External masses (Moon, Sun)	10-17	$< 10^{-18}$
Solid Earth tides	10^{-17}	$< 10^{-18}$
Ocean tides	10^{-17}	$< 10^{-18}$

P. Wolf and G. Petit, A&A (1995)

\rightarrow Realize a timescale in space ???

Useful if you can achieve high accuracy : gravimetry

- Use interconnected clocks (eg in GNSS) and correct them with a priori knowledge on their dynamics \rightarrow ABC system
- Put optical clocks in space

Quantitative study of spatio-temporal positioning

- Real time positioning
- High precision positioning
- Temporal positioning

- Earth-based user (stationary or moving)
- Space-based user (LEO satellite)

Metrology

- Toward a new definition of the second
- Improving the timescale
- Going in space
- Geodesy
 - Relativistic geodesy
 - Using clocks to measure the geopotential
 - The relativistic geoid

- Ellipsoid : terrestrial reference surface, purely geometrical
- Geoid : equipotential surface « nearest » to the mean sea level
- N < 100 m
- Geopotential number : $C_M = W_0 W_M = -\int_P^M dW = \int_P^M g dn$
 - Gravimeter, geometrical nivelling
- Height : dynamic quantity that reflect the distance from the geoid (realized with tide gauges)

The European height reference system

Reference tide gauges

« The national height reference systems of the European countries are tied to different reference points (tide gauges). Due to this fact and also as a result of the differences in the theoretical definition of heights, the reference heights may differ from each other by several dm, in maximum even up to 2 m. » (BKG website)

 One way out : global geoid model (satellite + ground gravimetry) + GPS measurements (~ 10 cm accuracy)

Relativistic geodesy

Three methods to determine potential differences

International timescales with optical clocks

- To make a complete evaluation of all relativistic effects influencing time and frequency comparisons at the 10⁻¹⁸ level of accuracy.
- To establish a connection to geodetic models in order to describe the variation of the clocks due to changes in the gravity potential, e.g. related to tidal effects
- To investigate the possibility of using continuously operated transportable optical clocks for the comparison of remote clocks
- To carry out a proof-of-principle experiment using optical clocks to measure gravity potential differences
- To perform an analysis of the complete frequency ratio measurement matrix derived from the optical clock comparison programme
- To consider how the output from this analysis could be used to derive steering corrections to UTC(k) timescales

- Reference in space : syntonization to Terrestrial Time
 - Ground clocks measure the « global » potential

satellite			
Effect	Order of magnitude	Uncertainty	
Earth's gravitational potential	$< 6 \times 10^{-10}$	Few 10^{-18} (GEM-T3) < 10^{-18} at $h > 4000$ km Few 10^{-18} (5 cm orbit uncertainty < 10^{-18} at $h > 10000$ km	
2nd order Doppler $(v^2/2/c^2)$	$< 3 \times 10^{-10}$	$< 10^{-18}$ at $h > 10000{ m km}$	
External masses : Moon	4×10^{-13}		
$(at h = 300000\mathrm{km})$ Sun	4×10^{-14}	$< 10^{-18}$	
Venus	6×10^{-18}		
Solid Earth tides	10-18	10-18	
Ocean tides	10	< 10	
Polar motion	(at low altitudes)		
Atmospheric pressure			

Table 2. Effects on syntonization with respect to TCG of clocks on board terrestrial satellites; Orders of magnitude and uncertainties of the corrections where h represents the altitude of the

Relativistic geoid : surfaces of constant clock rates

$$W_{\rm g} = W_{\rm E} + \frac{1}{2}V^2 - \frac{W_{\rm E}^2}{2c^2} - \frac{4W_{\rm E}^bV^b}{c^2} + \frac{3W_{\rm E}V^2}{2c^2} + \frac{V^4}{8c^2}$$

J. Muller et al, J. Geod. 82 (2008)

Conclusion

Realize the primary reference frame in space

- Time and frequency metrology
 - Better time unit (s)
 - Desynchronisation over large distance
 - Precise frequency dissemination
- Navigation
 - Ultra precise tracking of spacecrafts
 - Improve satellite navigation systems
- Geodesy
 - Earth's gravitational potential determination
- Fundamental physics
 - Test of general relativity
 - Link to the ICRF

