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Space and RCM
Space technologies have matured 
enough to permit an accurate 
measurement of the motion of celestial 
bodies (and artificial objects); 

Such measurements are now able to 
detect even relativistic corrections to 
these motions with a certain accuracy;

The study of such corrections is the 
object of Relativistic Celestial 
Mechanics (RCM);

RCM was used so far mainly to 
determine the gravitational waveform 
emitted by astrophysical objects, but 
its results can be used also in other 
ways...
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RCM vs Relativity  
RCM can be used as a powerful tool 
to test General Relativity at Solar 
System scales

Also RCM can offer an interesting 
new approach to the problem of a 
more realistic relativistic 
positioning system

In this sense it is important to find 
new ways to solve the RCM 
equations

Such calculation in the case of the 
restricted two body problem is the 
topic  of the present talk
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The two Spins “J” are defined as 3d Euclidean spin vectors 
(Damour et al. 2008).

We will assume J2 constant in modulus and direction.

the generating Hamiltonian in the 
barycenter coordinate system is
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Action-Angle Variables
To analyze the Hamiltonian let us define two groups of 
canonical variables:

Delaunay Variables

L =

p
Gma, G = L

p
1� e2, H = G cos i,

l = M, g = !, h = ⌦.

Serret-Andoyer Variables392 GURFIL et al.

Fig. 1. An inertial coordinate system, ŝ1, ŝ2, ŝ3, a body-fixed frame, b̂1, b̂2, b̂3, an angular momentum-based frame and
intersections of their fundamental planes, denoted by î, l̂, ĵ.

Evaluation of this product gives

R(φ, θ,ψ) =





cψcφ − sψcθsφ cψsφ + sψcθcφ sψsθ

−sψcφ − cψcθsφ −sψsφ + cψcθcφ cψsθ

sθsφ −sθcφ cθ




. (2)

To write the kinematic equations, we recall that the body angular-velocity vector, ω = [ω1,ω2,ω3]T
satisfies [28]

ω̂ = −ṘRT (3)

where the hat map (̂·) : R3 → so(3) is the usual Lie algebra isomorphism and

ω̂ =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



. (4)

Insertion of Eq. (2) into (3) yields the well-known expressions for the components of the vector
of the body angular velocity ω:

ω1 = φ̇sθsψ + θ̇cψ, (5)

ω2 = φ̇cψsθ − θ̇sψ, (6)

ω3 = ψ̇ + φ̇cθ, (7)
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The Hamiltonian can then be written schematically as               
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where

Action-Angle Variables
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Lie Series Perturbations
With this method the Hamiltonian of the problem is 
simplified via a canonical transformation. The general 
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X
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In our specific case

Lie Series Perturbations

{HN,�} = �@HN

@L

@�

@l
= �G2m2

2

L3

@�

@l
,

so that

� =

Z
L3

G2m2
2

(H1 �K) dl.

 The above equation represent an average over the mean 
motion

 its resolution simplifies the hamiltonian in the sense 
given above

 its results is valid even for highly eccentric orbits 
(but still elliptic)
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New Hamiltonian
With the choice above and making a (canonical) change 
of variables 

H0
= H0 + ✏F0 + ✏F1 cosh⇤.
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This Hamiltonian depends only on one angle and it is 
integrable. 

the Hamiltonian reads:

H̃⇤ = H + H̃,

h⇤ = h� h̃.
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The hamilton equations have the following form

The Hamilton Eqs.

dL

dt
= 0,

dG
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◆
.
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HAll the momenta apart     are conserved.
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The conservation of       implies the conservation of the 
z component of the total angular momentum.

H̃⇤

HAll the momenta apart     are conserved.
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Einstein Precession
In the case of absence of spin all 
momenta are constants of motion and 
the equations for the averaged 
orbital coordinates are:

The second equation gives the 
classical formula

dl
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=

G2m2
2

L3
+ ✏

3G4m4
2

2GL5
(6L� 5G),

dg
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= 3✏
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= 0.
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⌘ d!
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=

3m
3
2
2 G

3
2

c2a
5
2 (1� e2)

,

L
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Lens-Thirring effect
If only the central body is rotating, all 
momenta are constants of motion and

The Einstein precession is modified and 
there appears a precession of the lines of 
nodes with angular velocity

dl
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=
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+ ✏
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�
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L3G3

.

↵ = 2
m3

2G4J2
c2L3G3

.

L

J2
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Geodetic Effect
If only the secondary body is 
rotating, we have

L J1
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Geodetic Effect
If only the secondary body is 
rotating, we have
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the z component of the orbital 
angular momentum is not a 
constant of motion. 
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Geodetic Effect
If only the secondary body is 
rotating, we have

L J1

However the conservation of the 
other momenta indicate that:
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We can analyze the phase space  of 
the system above. 

Geodetic Effect
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We can analyze the phase space  of 
the system above. 

Geodetic Effect

L J1 J1L

L

J1

z

We find in general three fixed points: 

A :                  B :                 C :                                         
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We can analyze the phase space  of 
the system above. 

Geodetic Effect
C0

C-1
-

A 0

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

-3

-2

-1

0

1

2

3

H

h*

...but  for a given set of parameters 
only two fixed points appear in the 
phase space.

L J1 J1L

L

J1

z

We find in general three fixed points: 
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In the case in which the spin is much smaller than the 
angular momentum 

which is the classical formula of the  geodetic effect.
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Geodetic Effect
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The General Problem
Let us consider now the general case. 
We start with a phase space analysis.
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The Exact Solution
Combining the HAmiltonian with the equation for H, 
one has

dH

dt
= ±
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The Exact Solution
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f4(x)

=

Z t

t0

d⌧,

One can prove that the L.H.S. of the above equation 
is a quartic polynomial in H:
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Using a result by whittaker and Watson (1927) we 
can write the solution as
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The Exact Solution
This Solution has a number of interesting properties:

  It is generally a periodic real function of the time 
variable

 For some values of the parameters it can degenerate 
to a non-periodic function

 Some degenerate forms correspond to the solutions 
associated to the fixed points we found in the phase 
space analysis 

 In the case J2 = 0 the general solution reduces to a 
periodic function with angular velocity   

⌦ =
3

2
✏
m4

2G4

L3G3
M
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Numerical Examples
In the case of a Mercury-like planet we have
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Francesco Biscani and Sante Carloni: Restricted relativistic two-body problem with spin

Fig. 2. Time evolution of the absolute axial (top) and orbital (bottom) inclinations of a Mercury-like object orbiting the Sun. In the
bottom panel the quantity on the y axis is the difference from the initial value of orbital inclination. The different curves correspond
to different initial values for h∗. Time is measured in millions of years.

Parameter Value (SI units)

L0 2.77 × 1015
G0 2.71 × 1015
H0 2.69 × 1015
G̃0 2.95 × 106
H̃0 2.93 × 106
J2 1.12 × 1042
r1 6.37 × 106

Table 2. Initial values (in SI units) for the parameters of a sim-
plified Sun-Mercury two-body system.

Figure 2 shows the time evolution of the absolute axial and
orbital inclinations of the planet for different initial values of
the angle h∗. The period of the evolution, calculated from the
solution for H (t) in terms of elliptic functions, is 6.03Ma. When
h∗,0 = 0 the system is almost in equilibrium, as the initial axial
and orbital inclinations are almost equal and almost parallel to
the Sun’s spin vector. The amplitude of the periodic oscillation
increases together with h∗,0. The oscillation is much wider in
axial than in orbital inclination; this is a consequence of the fact
that for this system G # G̃: the conservation of H̃∗ = H + H̃,
G and G̃ imposes that a small change in the z component of the
mean orbital angular momentum, H, is proportionally a much
larger change in the z component of the mean spin vector, H̃.

The main effect that can be observed in Figure 2 is the geode-
tic precession. Indeed, in this dynamical system the slow ro-
tations of both the planet and the Sun minimise the spin-spin
interactions, and effectively relegate the spin-orbit effects to a
precession of the planet’s mean spin axis around the mean or-
bital angular momentum vector. This can be verified by noting
that the precessional rate given by eq. (51) yields essentially the
same period of 6.03Ma as the general formula in terms of elliptic
functions.

The correlation between the oscillation amplitude and h∗,0
has a simple geometrical interpretation: when h∗,0 = 0, the mean
spin and orbital angular momentum vectors share the same in-
clination (7◦) and nodal angle, and therefore they are parallel
(i.e., their relative angular separation is zero) and no precession
motion takes place; as the difference in initial nodal angles (i.e.,
h∗,0) increases, the relative angular separation between the two
vectors increases too and the mean spin precesses around the
mean orbital angular momentum vector. When h∗,0 = π, the ini-
tial angular separation reaches the maximum possible value, and
the projection of the precession motion on the z axis (which is
what is visualised in Figure 2) reaches its maximum oscillatory
amplitude too.

6.2. Pulsar planet

In this second case, the central body is a millisecond pulsar with
a Jupiter-like planet in close orbit. The parameters of the sys-
tem are displayed in Table 3, and they are similar to the esti-
mated parameters of the PSR J1719-1438 system (?): the mass
of the star is 1.4 M%, its spin period is 5.8 ms and its diameter

Parameter Value (SI units)

L0 3.33 × 1014
G0 3.32 × 1014
H0 3.12 × 1014
G̃0 5.32 × 1010
H̃0 5.23 × 1010
J2 4.83 × 1041
r1 2.76 × 107

Table 3. Initial values (in SI units) for the parameters of a pulsar-
Jovian planet two-body system.

is 20 km, while the planet has a mass roughly equal to Jupiter
(1.02 M!) and a radius of 0.4 r!, orbiting on a moderately-
inclined (i = 20◦) near-circular (e = 0.06) orbit with semi-major
axis of 600000 km. Lacking estimates on the rotational state of
the planet, we hypothesize a spin period similar to Jupiter (10 h)
and an absolute inclination of the spin vector of 10◦. As in the
preceding case, the plane of the ecliptic is identified as being
perpendicular to the spin axis of the star.

Figure 3 shows the time evolution of the absolute axial and
orbital inclinations of the planet for different initial values of the
angle h∗. The period of the evolution is much shorter than in
the previous case, amounting to 40 years circa. This system is
lacking an almost-equilibrium point for h∗,0 = 0, as the initial
values of the inclinations are not close (although the amplitude
of the oscillation is still correlated to h∗,0). As in the previous
case, the amplitude of the oscillation for the axial inclination
dominates over the oscillation in orbital inclination, but since
the G̃/G ratio is now larger the oscillation in orbital inclination
is also larger, reaching almost 0.01◦ when h∗,0 = 180◦.

6.3. Earth-orbiting gyroscope

In this last example, we consider the gravitomagnetic effects on a
gyroscope in low-orbit on board of a spacecraft around the Earth.
The parameters of the system are taken from the experimen-
tal setup of the Gravity Probe B mission (?): the orbit is polar
(i = 90.007◦) with a semi-major axis of 7027 km and low eccen-
tricity (e = 0.0014). The gyroscope consists of a rapidly rotating
quartz sphere (38 mm diameter) whose spin axis is lying on the
Earth’s equatorial plane (i.e., the spin plane is also “polar”). The
spin vector of the gyroscope and the orbital angular momentum
vector of the spacecraft, both lying on the equatorial plane, are
perpendicular to each other. Translated into mean Delaunay and
Serret-Andoyer parameters, this initial geometric configuration
implies H ∼ 0, H̃∗ ∼ 0, Gxy ∼ G, G̃xy∗ ∼ G̃ and h∗ = ±π/2 (with
the sign depending on the values of h and h̃ – note that in ? the
configuration shown in Fig. 1 implies h∗ = −π/2). The substi-
tution of these values in the general formula for H (t) yields a
period of roughly 195 ka.

Turning now our attention to the equations of motion, we
first note that, given the timescale of the time-evolution for H,
we can consider H and h∗ as constants for the duration of the
Gravity Probe B experiment. With this assumption, the equation
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Francesco Biscani and Sante Carloni: Restricted relativistic two-body problem with spin

Fig. 2. Time evolution of the absolute axial (top) and orbital (bottom) inclinations of a Mercury-like object orbiting the Sun. In the
bottom panel the quantity on the y axis is the difference from the initial value of orbital inclination. The different curves correspond
to different initial values for h∗. Time is measured in millions of years.
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mean orbital angular momentum, H, is proportionally a much
larger change in the z component of the mean spin vector, H̃.
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tations of both the planet and the Sun minimise the spin-spin
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Conclusion
We have analyzed the restricted 2-body problem at 
the 1PN approximation using Lie perturbation 
theory;

Our approach allows a complete (classical) analysis 
of the problem and the deduction of the exact 
solution of the problem of motion;

Our results match and generalize all the ones 
already found for the Einstein precession, the Lens-
Thirring effect and the geodetic effect;

For particular values of the parameters the 
solution for the system can acquire a non- periodic 
character.
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The RPS connection
The possibility to solve exactly the restricted 2-body 
problem has an impact in terms of RPS:

In its present form our results can lead a 
semiclassical approach to the problem of RPS (is it 
useful?)

Fits well with the ABC way of constructing RPS and 
allows a first exploration of more realistic 
spacetimes (rotating fields, inhomogeneous fields, 
etc.)

It opens the explicit possibility to test General 
Relativity using GPS satellites (introduce PPN 
parameters)
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