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SPACE AND RCM

B SPACE TECHNOLOGIES HAVE MATURED
ENOUGH TO PERMIT AN ACCURATE
MEASUREMENT OF THE MOTION OF CELESTIAL
BODIES (AND ARTIFICIAL OBJECTS);

@ SUCH MEASUREMENTS ARE NOW ABLE TO
TO
THESE MOTIONS WITH A CERTAIN ACCURACY;

@ THE STUDY OF SUCH CORRECTIONS IS THE
OBJECT OF RELATIVISTIC CELESTIAL
MECHANICS (RCM);

# RCM WAS USED SO FAR MAINLY TO
DETERMINE THE GRAVITATIONAL WAVEFORM
EMITTED BY ASTROPHYSICAL OBJECTS, BUT
ITS RESULTS CAN BE USED ALSO IN OTHER
WAYS...
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RCM VvsS RELATIVITY

@ RCM CAN BE USED AS A POWERFUL TOOL
TO TEST GENERAL RELATIVITY AT SOLAR
SYSTEM SCALES

@ ALSO RCM CAN OFFER AN INTERESTING
NEW APPROACH TO THE PROBLEM OF A
MORE REALISTIC RELATIVISTIC
POSITIONING SYSTEM

@ IN THIS SENSE IT IS IMPORTANT TO FIND
NEW WAYS TO SOLVE THE RCM
EQUATIONS

@ SUCH CALCULATION IN THE CASE OF THE
RESTRICTED TWO BODY PROBLEM IS THE
TOPIC OF THE PRESENT TALK
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2-BoDY PROBLEM (1PN)

IN THE CASE OF THE RESTRICTED TWO BODIES :
PROBLEM:

THE GENERATING HAMILTONIAN IN THE
BARYCENTER COORDINATE SYSTEM IS
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2-BoDY PROBLEM (1PN)

IN THE CASE OF THE RESTRICTED TWO BODIES ; i
PROBLEM:

mi

THE GENERATING HAMILTONIAN IN THE
BARYCENTER COORDINATE SYSTEM IS

1y — R Ymgl Blipa iSpin G
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THE TWO SPINS ‘“J’” ARE DEFINED AS 3D EUCLIDEAN SPIN VECTORS
(DAMOUR ET AL. 2008).

WE WILL ASSUME J> CONSTANT IN MODULUS AND DIRECTION.
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ACTION-ANGLE VARIABLES

TO ANALYZE THE HAMILTONIAN LET US DEFINE TWO GROUPS OF

CANONICAL VARIABLES:

¢ DELAUNAY VARIABLES

Celestial body

True anomaly

: Argument of pgnapsis
STw
Q <> - 0Y5
i f ] NOQE

Longtude of ascend Reference
direction

Pl

{# SERRET-ANDOYER VARIABLES
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ACTION-ANGLE VARIABLES

THE HAMILTONIAN CAN THEN BE WRITTEN SCHEMATICALLY AS

1
H="Hy+ 0—27'[1,
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WITH THIS METHOD THE HAMILTONIAN OF THE PROBLEM IS
SIMPLIFIED VIA A CANONICAL TRANSFORMATION. THE GENERAL
LIE SERIES TRANSFORMATION READS

€ L - En n
ke 2_:0 — L3H,

AT THE FIRST ORDER IN THE LIE DERIVATIVE THE
TRANSFORMATION DEGENERATES TO A POISSON BRACKET.

i Ho + ES{/H(),X} i 7‘[12.
K

WRITING THE EIH HAMILTONIAN As H = Ho + €H1 THE TASK IS
TO FIND THE FUNCTION X SUCH THAT ' IS As SIMPLE AS
POSSIBLE.
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LIE SERIES PERTURBATIONS

IN OUR SPECIFIC CASE

GRRRHEN g _Qng Ox
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LIE SERIES PERTURBATIONS

IN OUR SPECIFIC CASE

GRRRHEN g _Qng Ox

PRl e o e e
SO THAT
LS
— — K)dl.
X ng% (H]- )

B THE ABOVE EQUATION REPRESENT AN AVERAGE OVER THE MEAN
MOTION
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LIE SERIES PERTURBATIONS

IN OUR SPECIFIC CASE

GRRRHEN g G*m3 Ox

PRl e o e e
SO THAT
LS
== — K) dl.
X ng% (H]- )

B THE ABOVE EQUATION REPRESENT AN AVERAGE OVER THE MEAN
MOTION

B ITS RESOLUTION SIMPLIFIES THE HAMILTONIAN IN THE SENSE
GIVEN ABOVE

B ITS RESULTS IS VALID EVEN FOR HIGHLY ECCENTRIC ORBITS
(BUT STILL ELLIPTIC)
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NEW HAMILTONIAN

WITH THE CHOICE ABOVE AND MAKING A (CANONICAL) CHANGE
OF VARIABLES

~

H,=H+ H,
=31 g =1
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NEW HAMILTONIAN

WITH THE CHOICE ABOVE AND MAKING A (CANONICAL) CHANGE

OF VARIABLES R
ARS8 HEE s

h, =h — h.

THE HAMILTONIAN READS:
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NEW HAMILTONIAN

WITH THE CHOICE ABOVE AND MAKING A (CANONICAL) CHANGE

OF VARIABLES 2
S

= i

H,
hs
THE HAMILTONIAN READS:
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J2g4m3 o
e A, (G* - 3H?) + 3H (G* + H?),
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NEW HAMILTONIAN

WITH THE CHOICE ABOVE AND MAKING A (CANONICAL) CHANGE
OF VARIABLES

H -+ H,

= i

H,
hs
THE HAMILTONIAN READS:

= I e I S e

ety G*mj3
s b ff B 7
it 3G4m; = 3 2 2
Fo= =250y [4HLH, +5G* — 4L (26 + H?)|
J2g4m3 o
e A, (G* - 3H?) + 3H (G* + H?),
i =
fl e 39 m2GacyGa;y>k (G2m2 0 HJQ) .

2G° L3
THIS HAMILTONIAN DEPENDS ONLY ON ONE ANGLE AND IT IS
INTEGRABLE.
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THE HAMILTON EQS.

THE HAMILTON EQUATIONS HAVE THE FOLLOWING FORM

“_, 4 Gmtte
%:0, %:G(%—l—%COSh*)a

Cil_lz = eJ1 sin h,, d;* — ¢ (% -+ %COS}L*> ,

% =0 % :IléJre% cos h,

dH, dh B e
— 0 an 0 1
i ; e € <8ﬁ* e aﬁ* COS h*> :
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THE HAMILTON EQS.

THE HAMILTON EQUATIONS HAVE THE FOLLOWING FORM

s 4 Gmtte
%:07 %:e(%Jr%cosh*),

Cii_]z = eJ1 sin h,, d;* — ¢ (% -+ %COS}L*> ,

Z_f = % :IléJre% cos h,

ALL THE MOMENTA APART H ARE CONSERVED.
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THE HAMILTON EQS.

THE HAMILTON EQUATIONS HAVE THE FOLLOWING FORM

“_, 4 Gmtte
%:07 %:e(%Jr%cosh*),

Cii_]z = eJ1 sin h,, d;* — ¢ (% -+ %COS}L*> ,

‘é_f — 0 % :IléJre% cos h,

ALL THE MOMENTA APART H ARE CONSERVED.

THE CONSERVATION OF H* IMPLIES THE CONSERVATION OF THE
Z COMPONENT OF THE TOTAL ANGULAR MOMENTUM.
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EINSTEIN PRECESSION

IN THE CASE OF ABSENCE OF SPIN ALL
MOMENTA ARE CONSTANTS OF MOTION AND
THE EQUATIONS FOR THE AVERAGED
ORBITAL COORDINATES ARE:

dl 14 QQm% 394m§

E_ L3 —|—€2GL5 (6L—5G),

dg ., m5G*

— = 3¢ ;
dt 13G2

dh

.

dit

THE SECOND EQUATION GIVES

3

gyl siaio s ?)7712%9§
0 Tl CZCL% (1—@2)7
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LENS-THIRRING EFFECT

IF ONLY THE CENTRAL BODY IS ROTATING, ALL
MOMENTA ARE CONSTANTS OF MOTION AND

dl _ G*m3 3G*ms3 6G*H Jom3 Jz
e JAES i3

EEMI a0 ( el o R e A N
dg 3eGim3

P (G*ms — 2H J3)

% — 2€m§g4j2

dt 13G?3

THE EINSTEIN PRECESSION IS MODIFIED AND
THERE APPEARS A PRECESSION OF THE LINES OF
NODES WITH ANGULAR VELOCITY

m‘;’g‘ng

a:262L3G3‘
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IF ONLY THE CENTRAL BODY IS ROTATING, ALL
MOMENTA ARE CONSTANTS OF MOTION AND

dl _ G*m3 3G*ms3 6G*H Jom3 Jz
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EEMI a0 ( T el e > ’ N
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GEODETIC EFFECT

IF ONLY THE SECONDARY BODY IS 1 '\

ROTATING, WE HAVE

BE S O GG

T
dhe _ | JHG'mp' 3G'H.my* [ 3Gy HG'm,
dt Rl e 2 G3L3Glyys

3 nyg4ﬁ*m24 i §Hg4éwy*m24 e
2 (CEIGE e 2 GG ;

J1
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GEODETIC EFFECT

IF ONLY THE SECONDARY BODY IS 1 ’\

ROTATING, WE HAVE

T
dhe _ | JHG'mp' 3G'H.my* [ 3Gy HG'm,
dt ST R A 2Eside

§ nyg4ﬁ*m24 3 Hg4éacy*m24 e
2 (CEIGE e 2 GG ;

THE Z COMPONENT OF THE ORBITAL
ANGULAR MOMENTUM IS NOT A
CONSTANT OF MOTION.
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GEODETIC EFFECT

IF ONLY THE SECONDARY BODY IS 1 \ Ji

ROTATING, WE HAVE

BE S O GG

T
dhe _ | JHG'mp' 3G'H.my* [ 3Gy HG'm,
dt ST R A 2Eside

§ nyg4ﬁ*m24 3 Hg4éacy*m24 e
2 (CEIGE e 2 GG ;

THE Z COMPONENT OF THE ORBITAL L+J4
ANGULAR MOMENTUM IS NOT A
CONSTANT OF MOTION. <

HOWEVER THE CONSERVATION OF THE J;
OTHER MOMENTA INDICATE THAT:
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GEODETIC EFFECT

WE CAN ANALYZE THE PHASE SPACE OF
THE SYSTEM ABOVE.
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WE FIND IN GENERAL THREE FIXED POINTS:

S N

Thursday, 20 September, 2012



GEODETIC EFFECT

WE CAN ANALYZE THE PHASE SPACE OF
THE SYSTEM ABOVE.

WE FIND IN GENERAL THREE FIXED POINTS:

S N

...BUT FOR A GIVEN SET OF PARAMETERS
ONLY TWO FIXED POINTS APPEAR IN THE

PHASE SPACE.
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GEODETIC EFFECT

IN THE CASE IN WHICH THE SPIN IS MUCH SMALLER THAN THE
ANGULAR MOMENTUM

dh _ 3mig*  3(maQ)®

dt €2L3G2 i QCQCL% (1 - 62))

WHICH IS THE
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THE GENERAL PROBLEM

LET US CONSIDER NOW THE GENERAL CASE.
WE START WITH A PHASE SPACE ANALYSIS.
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THE GENERAL PROBLEM

LET US CONSIDER NOW THE GENERAL CASE.
WE START WITH A PHASE SPACE ANALYSIS.

FIXED POINTS:

ey it g*)
G—2 conme e i <j2 ~+ 3 .
*72 : jZG:Ey*G:By

|
®
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THE GENERAL PROBLEM

LET US CONSIDER NOW THE GENERAL CASE.
WE START WITH A PHASE SPACE ANALYSIS.

FIXED POINTS:

2
o H(e)zi—, cos h'® =
>

G2 (% s j2 135 IN{*)
jQny*GiL’y |
i) -0, R —kn

STABILITY: SADDLE OR CENTER (TYPICAL OF
HAMILTONIAN SYSTEMS).
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THE GENERAL PROBLEM

LET US CONSIDER NOW THE GENERAL CASE.
WE START WITH A PHASE SPACE ANALYSIS.

FIXED POINTS:

2
o H(e)zi—, cos h'® =
>

G2 (% s j2 135 IN{*)
jZG:Ey*G:Uy |
)0, Y —kn

STABILITY: SADDLE OR CENTER (TYPICAL OF
HAMILTONIAN SYSTEMS).

gd = £ 3 BEEE f ~

APERIODIC BEHAVIORS ARE POSSIBLE! | st LL 3
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COMBINING THE HAMILTONIAN WITH THE EQUATION FOR H,
ONE HAS

dH 2
E:Zl:\/EQ.F%—(H/_HN_E.FO) ,
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THE EXACT SOLUTION

COMBINING THE HAMILTONIAN WITH THE EQUATION FOR H,
ONE HAS

dH 2
E:Zl:\/EQ.F%—(H/_HN_E.FO) ,

ONE CAN PROVE THAT THE L.H.S. OF THE ABOVE EQUATION
IS A QUARTIC POLYNOMIAL IN H:

H
/_HO

_\/%:/todﬂ

USING A RESULT BY WHITTAKER AND WATSON (1927) WE
CAN WRITE THE SOLUTION AS

i Hol g ks sl ()| B o fa(H ) (Ho) 0 [l el

2 [p (1)

A e
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THE EXACT SOLUTION

COMBINING THE HAMILTONIAN WITH THE EQUATION FOR H,
ONE HAS

dH 2
E:Zl:\/EQ.F%—(H/_HN_E.FO) ,

ONE CAN PROVE THAT THE L.H.S. OF THE ABOVE EQUATION
IS A QUARTIC POLYNOMIAL IN H:

vl b

USING A RESULT BY WHITTAKER AND WATSON (1927) WE
CAN WRITE THE SOLUTION AS

31 (Ho) [ () — 544 (Ho)] + 314 (Ho) fi" (Ho) £ v/ fa (Ho)¢' ()
2 [0 (6) = 55 (Ho)]" — 5 fa (Ho) fi¥ (Ho)

51 ) = ety

)

WHERE (1) IS THE WEIERSTRASS ELLIPTIC FUNCTION.
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THIS SOLUTION HAS A NUMBER OF INTERESTING PROPERTIES:
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THE EXACT SOLUTION

THIS SOLUTION HAS A NUMBER OF INTERESTING PROPERTIES:

. IT IS GENERALLY A PERIODIC REAL FUNCTION OF THE TIME
VARIABLE

B FOR SOME VALUES OF THE PARAMETERS IT CAN DEGENERATE
TO A NON-PERIODIC FUNCTION

. SOME DEGENERATE FORMS CORRESPOND TO THE SOLUTIONS
ASSOCIATED TO THE FIXED POINTS WE FOUND IN THE PHASE
SPACE ANALYSIS

. IN THE CASE J = O THE GENERAL SOLUTION REDUCES TO A
PERIODIC FUNCTION WITH ANGULAR VELOCITY

S

Lieriaa

M
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NUMERICAL EXAMPLES

IN THE CASE OF A MERCURY-LIKE PLANET WE HAVE
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NUMERICAL EXAMPLES

IN THE CASE OF A MERCURY-LIKE PLANET WE HAVE

Axial tilt

\

J2 w
L Ji

—

Inclination
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NUMERICAL EXAMPLES

IN THE CASE OF A MERCURY-LIKE PLANET WE HAVE

25

20

15

Axial tilt (°)

[
o

Alnclination (° x 107%)
\ | | I \
oo = = o
ot (@) ot (@] ot
T T T T T
N

|
@
o
T

|
o«
o

Il

10

Time (Ma)

15 20

Axial tilt
Jo g

L J

Inclination
Parameter  Value (SI units)

Lo D Tl
Go 271 <105
H, 2.69 x 1015
Gy 2.955<110°
H, 2.93 x 10°
Jo Bl sl
r 6.37 x 106
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NUMERICAL EXAMPLES

IN THE CASE OF A GAS GIANT ROTATING AROUND A PULSAR WE
HAVE
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NUMERICAL EXAMPLES

IN THE CASE OF A GAS GIANT ROTATING AROUND A PULSAR WE

T2 Axial tilt

\

Inclination
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NUMERICAL EXAMPLES

IN THE CASE OF A GAS GIANT ROTATING AROUND A PULSAR WE

HAVE

Axial tilt (°)

Alnclination (° x 107%)

—10.0 ‘

40

60

80 100 120 140 160
Time (yr)

Axial tilt
Jo g

L J

Inclination
Parameter  Value (SI units)

Lo 3.33 x 104
Go 3.32 x 10
H, 3 [ oh i
Gy 5328l
H, Wbl
J> 4.83 x 104
r 2. 7610
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CONCLUSION

B WE HAVE ANALYZED THE RESTRICTED 2-BODY PROBLEM AT
THE 1PN APPROXIMATION USING LIE PERTURBATION
THEORY;

B OUR APPROACH ALLOWS A COMPLETE (CLASSICAL) ANALYSIS
OF THE PROBLEM AND THE DEDUCTION OF THE EXACT
SOLUTION OF THE PROBLEM OF MOTION;

B OUR RESULTS MATCH AND GENERALIZE ALL THE ONES
ALREADY FOUND FOR THE EINSTEIN PRECESSION, THE LENS-
THIRRING EFFECT AND THE GEODETIC EFFECT;

® FOR PARTICULAR VALUES OF THE PARAMETERS THE
SOLUTION FOR THE SYSTEM CAN ACQUIRE A NON- PERIODIC
CHARACTER.
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THE RPS CONNECTION

THE POSSIBILITY TO SOLVE EXACTLY THE RESTRICTED 2-BODY
PROBLEM HAS AN IMPACT IN TERMS OF RPS:

® IN ITS PRESENT FORM OUR RESULTS CAN LEAD A
SEMICLASSICAL APPROACH TO THE PROBLEM OF RPS (IS IT
USEFUL?)

B FITsS WELL WITH THE ABC WAY OF CONSTRUCTING RPS AND
ALLOWS A FIRST EXPLORATION OF MORE REALISTIC
SPACETIMES (ROTATING FIELDS, INHOMOGENEOUS FIELDS,
ETC.)

@ IT OPENS THE EXPLICIT POSSIBILITY TO TEST GENERAL
RELATIVITY USING GPS SATELLITES (INTRODUCE PPN
PARAMETERS)
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