LIE PERTURBATIVE ANALYSIS OF THE RESTRICTED TWO-BODY PROBLEM IN PN-GRAVITATION

SANTE CARLONI ACT-ESA 20/09/2012

SPACE AND RCM

SPACE AND RCM

- SPACE TECHNOLOGIES HAVE MATURED ENOUGH TO PERMIT AN ACCURATE MEASUREMENT OF THE MOTION OF CELESTIAL BODIES (AND ARTIFICIAL OBJECTS);

SPACE AND RCM

- SPACE TECHNOLOGIES HAVE MATURED ENOUGH TO PERMIT AN ACCURATE MEASUREMENT OF THE MOTION OF CELESTIAL BODIES (AND ARTIFICIAL OBJECTS);
- SUCH MEASUREMENTS ARE NOW ABLE TO DETECT EVEN RELATIVISTIC CORRECTIONS TO THESE MOTIONS WITH A CERTAIN ACCURACY;

SPACE AND RCM

- SPACE TECHNOLOGIES HAVE MATURED ENOUGH TO PERMIT AN ACCURATE MEASUREMENT OF THE MOTION OF CELESTIAL BODIES (AND ARTIFICIAL OBJECTS);
- SUCH MEASUREMENTS ARE NOW ABLE TO DETECT EVEN RELATIVISTIC CORRECTIONS TO THESE MOTIONS WITH A CERTAIN ACCURACY;
- THE STUDY OF SUCH CORRECTIONS IS THE OBJECT OF RELATIVISTIC CELESTIAL
 MECHANICS (RCM);

SPACE AND RCM

- SPACE TECHNOLOGIES HAVE MATURED ENOUGH TO PERMIT AN ACCURATE MEASUREMENT OF THE MOTION OF CELESTIAL BODIES (AND ARTIFICIAL OBJECTS);

- SUCH MEASUREMENTS ARE NOW ABLE TO DETECT EVEN RELATIVISTIC CORRECTIONS TO THESE MOTIONS WITH A CERTAIN ACCURACY;
- THE STUDY OF SUCH CORRECTIONS IS THE OBJECT OF RELATIVISTIC CELESTIAL MECHANICS (RCM);
- RCM WAS USED SO FAR MAINLY TO DETERMINE THE GRAVITATIONAL WAVEFORM EMITTED BY ASTROPHYSICAL OBJECTS, BUT ITS RESULTS CAN BE USED ALSO IN OTHER WAYS...

RCM Vs RELATIVITY

RCM Vs RELATIVITY

- RCM CAN BE USED AS A POWERFUL TOOL TO TEST GENERAL RELATIVITY AT SOLAR SYSTEM SCALES

RCM Vs RELATIVITY

- RCM CAN BE USED AS A POWERFUL TOOL TO TEST GENERAL RELATIVITY AT SOLAR SYSTEM SCALES
- ALSO RCM CAN OFFER AN INTERESTING NEW APPROACH TO THE PROBLEM OF A MORE REALISTIC RELATIVISTIC POSITIONING SYSTEM

RCM vs RELATIVITY

- RCM CAN BE USED AS A POWERFUL TOOL TO TEST GENERAL RELATIVITY AT SOLAR SYSTEM SCALES
- ALSO RCM CAN OFFER AN INTERESTING NEW APPROACH TO THE PROBLEM OF A MORE REALISTIC RELATIVISTIC POSITIONING SYSTEM
- IN THIS SENSE IT IS IMPORTANT TO FIND NEW WAYS TO SOLVE THE RCM EQUATIONS

RCM Vs RELATIVITY

- RCM CAN BE USED AS A POWERFUL TOOL TO TEST GENERAL RELATIVITY AT SOLAR SYSTEM SCALES
- ALSO RCM CAN OFFER AN INTERESTING NEW APPROACH TO THE PROBLEM OF A MORE REALISTIC RELATIVISTIC POSITIONING SYSTEM
- IN THIS SENSE IT IS IMPORTANT TO FIND NEW WAYS TO SOLVE THE RCM EQUATIONS
- SUCH CALCULATION IN THE CASE OF THE RESTRICTED TWO BODY PROBLEM IS THE TOPIC OF THE PRESENT TALK

2-BODY PROBLEM (1PN)

2-BODY PROBLEM (1PN)

IN THE CASE OF THE RESTRICTED TWO BODIES PROBLEM:

2-BODY PROBLEM (1PN)

IN THE CASE OF THE RESTRICTED TWO BODIES

 PROBLEM:the generating Hamiltonian in the BARYCENTER COORDINATE SYSTEM IS

$$
\begin{aligned}
\mathcal{H}= & \frac{\mathbf{J}_{1}^{2}}{2 I_{1}}+\frac{1}{2} \frac{\mathbf{p}_{\mathbf{1}}^{2}}{m_{1}}-\frac{\mathcal{G} m_{1} m_{2}}{r}-\frac{1}{8 c^{2}} \frac{\mathbf{p}_{\mathbf{1}}{ }^{4}}{m_{1}^{3}}-\frac{3 \mathbf{p}_{\mathbf{1}}{ }^{2}}{2 m_{1} c^{2}} \frac{\mathcal{G} m_{2}}{r} \\
& +\frac{\mathcal{G}^{2} m_{1} m_{2}^{2}}{2 c^{2} r^{2}}+\frac{3 \mathcal{G} m_{2}}{2 m_{1} c^{2} r^{3}} \mathbf{J}_{1} \cdot\left(\mathbf{r} \times \mathbf{p}_{\mathbf{1}}\right)+\frac{2 \mathcal{G}}{c^{2} r^{3}} \mathbf{J}_{2} \cdot\left(\mathbf{r} \times \mathbf{p}_{\mathbf{1}}\right) \\
& +\frac{\mathcal{G}}{c^{2} r^{3}}\left[\frac{3\left(\mathbf{J}_{1} \cdot \mathbf{r}\right)\left(\mathbf{J}_{2} \cdot \mathbf{r}\right)}{r^{2}}-\mathbf{J}_{1} \cdot \mathbf{J}_{2}\right]
\end{aligned}
$$

2-BODY PROBLEM (1PN)

IN THE CASE OF THE RESTRICTED TWO BODIES

 PROBLEM:the generating Hamiltonian in the BARYCENTER COORDINATE SYSTEM IS

$$
\begin{aligned}
& \mathcal{H}=\left(\frac{\mathbf{J}_{1}^{2}}{2 I_{1}}+\frac{1}{2} \frac{\mathbf{p}_{\mathbf{1}}^{2}}{m_{1}}-\frac{\mathcal{G} m_{1} m_{2}}{r}\right. \\
&+\frac{1}{\mathcal{G}^{2} m_{1} m_{2}^{2}} \\
& 2 c^{2} r^{2} \frac{3 \mathcal{G} m_{2}}{\mathbf{p}_{\mathbf{1}}}{ }^{4} m_{1}^{3} c^{2} r^{3} \\
&\left.\mathbf{J}_{1} \cdot \frac{3 \mathbf{p}_{\mathbf{1}}{ }^{2}}{2 m_{1} c^{2}} \frac{\mathcal{G} m_{2}}{r} \times \mathbf{p}_{\mathbf{1}}\right)+\frac{2 \mathcal{G}}{c^{2} r^{3}} \mathbf{J}_{2} \cdot\left(\mathbf{r} \times \mathbf{p}_{\mathbf{1}}\right) \\
&+\frac{\mathcal{G}}{c^{2} r^{3}}\left[\frac{3\left(\mathbf{J}_{1} \cdot \mathbf{r}\right)\left(\mathbf{J}_{2} \cdot \mathbf{r}\right)}{r^{2}}-\mathbf{J}_{1} \cdot \mathbf{J}_{2}\right]
\end{aligned}
$$

2-BODY PROBLEM (1PN)

IN THE CASE OF THE RESTRICTED TWO BODIES

 PROBLEM:the generating Hamiltonian in the BARYCENTER COORDINATE SYSTEM IS

$$
\begin{aligned}
\mathcal{H}= & \frac{\mathbf{J}_{1}^{2}}{2 I_{1}}+\frac{1}{2} \frac{\mathbf{p}_{\mathbf{1}}{ }^{2}}{m_{1}}-\frac{\mathcal{G} m_{1} m_{2}}{r}-\frac{1}{8 c^{2}} \frac{\mathbf{p}_{\mathbf{1}}{ }^{4}}{m_{1}^{3}}-\frac{3 \mathbf{p}_{\mathbf{1}}{ }^{2}}{2 m_{1} c^{2}} \frac{\mathcal{G} m_{2}}{r} \\
& +\frac{\mathcal{G}^{2} m_{1} m_{2}^{2}}{2 c^{2} r^{2}}+\frac{3 \mathcal{G} m_{2}}{2 m_{1} c^{2} r^{3}} \mathbf{J}_{1} \cdot\left(\mathbf{r} \times \mathbf{p}_{\mathbf{1}}\right)+\frac{2 \mathcal{G}}{c^{2} r^{3}} \mathbf{J}_{2} \cdot\left(\mathbf{r} \times \mathbf{p}_{\mathbf{1}}\right) \\
& +\frac{\mathcal{G}}{c^{2} r^{3}}\left[\frac{3\left(\mathbf{J}_{1} \cdot \mathbf{r}\right)\left(\mathbf{J}_{2} \cdot \mathbf{r}\right)}{r^{2}}-\mathbf{J}_{1} \cdot \mathbf{J}_{2}\right]
\end{aligned}
$$

2-BODY PROBLEM (1PN)

IN THE CASE OF THE RESTRICTED TWO BODIES

 PROBLEM:the generating Hamiltonian in the BARYCENTER COORDINATE SYSTEM IS

$$
\begin{aligned}
\mathcal{H}= & \frac{\mathbf{J}_{1}^{2}}{2 I_{1}}+\frac{1}{2} \frac{\mathbf{p}_{\mathbf{1}}{ }^{2}}{m_{1}}-\frac{\mathcal{G} m_{1} m_{2}}{r}-\frac{1}{8 c^{2}} \frac{\mathbf{p}_{\mathbf{1}}{ }^{4}}{m_{1}^{3}}-\frac{3 \mathbf{p}_{\mathbf{1}}{ }^{2}}{2 m_{1} c^{2}} \frac{\mathcal{G} m_{2}}{r} \\
& +\frac{\mathcal{G}^{2} m_{1} m_{2}^{2}}{2 c^{2} r^{2}}+\frac{3 \mathcal{G} m_{2}}{2 m_{1} c^{2} r^{3}} \mathbf{J}_{1} \cdot\left(\mathbf{r} \times \mathbf{p}_{\mathbf{1}}\right)+\frac{2 \mathcal{G}}{c^{2} r^{3}} \mathbf{J}_{2} \cdot\left(\mathbf{r} \times \mathbf{p}_{\mathbf{1}}\right) \\
& \left.+\frac{\mathcal{G}}{c^{2} r^{3}}\left[\frac{3\left(\mathbf{J}_{1} \cdot \mathbf{r}\right)\left(\mathbf{J}_{2} \cdot \mathbf{r}\right)}{r^{2}}-\mathbf{J}_{1} \cdot \mathbf{J}_{2}\right]\right)
\end{aligned}
$$

2-BODY PROBLEM (1PN)

IN THE CASE OF THE RESTRICTED TWO BODIES PROBLEM:
the generating Hamiltonian in the BARYCENTER COORDINATE SYSTEM IS

$$
\begin{aligned}
\mathcal{H}= & \frac{\mathbf{J}_{1}^{2}}{2 I_{1}}+\frac{1}{2} \frac{\mathbf{p}_{\mathbf{1}}{ }^{2}}{m_{1}}-\frac{\mathcal{G} m_{1} m_{2}}{r}-\frac{1}{8 c^{2}} \frac{\mathbf{p}_{\mathbf{1}}{ }^{4}}{m_{1}^{3}}-\frac{3 \mathbf{p}_{\mathbf{1}}{ }^{2}}{2 m_{1} c^{2}} \frac{\mathcal{G} m_{2}}{r} \\
& +\frac{\mathcal{G}^{2} m_{1} m_{2}^{2}}{2 c^{2} r^{2}}+\frac{3 \mathcal{G} m_{2}}{2 m_{1} c^{2} r^{3}} \mathbf{J}_{1} \cdot\left(\mathbf{r} \times \mathbf{p}_{\mathbf{1}}\right)+\frac{2 \mathcal{G}}{c^{2} r^{3}} \mathbf{J}_{2} \cdot\left(\mathbf{r} \times \mathbf{p}_{\mathbf{1}}\right) \\
& +\frac{\mathcal{G}}{c^{2} r^{3}}\left[\frac{3\left(\mathbf{J}_{1} \cdot \mathbf{r}\right)\left(\mathbf{J}_{2} \cdot \mathbf{r}\right)}{r^{2}}-\mathbf{J}_{1} \cdot \mathbf{J}_{2}\right]
\end{aligned}
$$

THE TWO SPINS "J" ARE DEFINED AS 3D EUCLIDEAN SPIN VECTORS (DAMOUR ET AL. 2008).

WE WILL ASSUME J_{2} CONSTANT IN MODULUS AND DIRECTION.

Action-Angle Variables

To analyze the Hamiltonian let us define two groups of CANONICAL VARIABLES:

Action-Angle Variables

To analyze the Hamiltonian let us define two groups of CANONICAL VARIABLES:

Delaunay Variables

$$
\left.\begin{array}{rlrlrl}
L & =\sqrt{\mathcal{G} m a}, & & G & =L \sqrt{1-e^{2}}, & H
\end{array}\right)=G \cos i, \quad \text { l }
$$

Action-Angle Variables

To analyze the hamiltonian let us define two groups of CANONICAL VARIABLES:

DELAUNAY VARIABLES

$L=\sqrt{\mathcal{G} m a}, \quad G=L \sqrt{1-e^{2}}, \quad H=G \cos i$, $l=M, \quad g=\omega, \quad h=\Omega$.

SERRET-ANDOYER VARIABLES

$$
\tilde{G}=\frac{J_{1}}{m_{1}}, \quad \tilde{H}=\frac{J_{1, z}}{m_{1}},
$$

$\tilde{h}=\arctan \left(\frac{\sqrt{J_{1, y}^{2}+J_{1, z}^{2}}}{J_{1, x}}\right)$

Action-Angle Variables

THE HAMILTONIAN CAN THEN BE WRITTEN SCHEMATICALLY AS

$$
\mathcal{H}=\mathcal{H}_{0}+\frac{1}{c^{2}} \mathcal{H}_{1}
$$

WHERE

$$
\begin{aligned}
\mathcal{H}_{0}= & \frac{1}{2} \mathcal{I}_{1} \tilde{G}^{2}-\frac{\mathcal{G}^{2} m_{2}^{2}}{2 L^{2}} \\
\mathcal{H}_{1}= & \mathcal{A}_{0}+\frac{\mathcal{A}_{1}}{r}+\frac{\mathcal{A}_{2}}{r^{2}}+\frac{1}{r^{3}}\left(\mathcal{A}_{3 a}+\mathcal{A}_{3 b} \cos (\tilde{h}-h)\right) \\
& +\frac{1}{r^{3}}\left(\mathcal{B}_{0} \cos (2 f+2 g)+\mathcal{B}_{1} \cos (2 f+2 g+\tilde{h}-h)\right. \\
& \left.+\mathcal{B}_{2} \cos (2 f+2 g-\tilde{h}+h)\right), \\
\mathcal{A}_{i}= & \mathcal{A}_{i}(L, G, H, \tilde{G}, \tilde{H}) \\
\mathcal{B}_{i}= & \mathcal{B}_{i}(L, G, H, \tilde{G}, \tilde{H}) \quad
\end{aligned}
$$

Lie Series Perturbations

LIE SERIES PERTURBATIONS

With this method the hamiltonian of the problem is SIMPLIFIED VIA A CANONICAL TRANSFORMATION. THE GENERAL LIE SERIES TRANSFORMATION READS

$$
\mathcal{H}^{\prime}=\mathcal{S}_{\chi}^{\epsilon} \mathcal{H}=\sum_{n=0} \frac{\epsilon^{n}}{n!} \mathcal{L}_{\chi}^{n} \mathcal{H}
$$

LIE SERIES PERTURBATIONS

With this method the hamiltonian of the problem is SIMPLIFIED VIA A CANONICAL TRANSFORMATION. THE GENERAL LIE SERIES TRANSFORMATION READS

$$
\mathcal{H}^{\prime}=\mathcal{S}_{\chi}^{\epsilon} \mathcal{H}=\sum_{n=0} \frac{\epsilon^{n}}{n!} \mathcal{L}_{\chi}^{n} \mathcal{H}
$$

At THE FIRST ORDER IN THE LIE DERIVATIVE THE TRANSFORMATION DEGENERATES TO A POISSON BRACKET.

$$
\mathcal{H}^{\prime}=\mathcal{H}_{0}+\epsilon \underbrace{\left(\left\{\mathcal{H}_{0}, \chi\right\}+\mathcal{H}_{1}\right)}_{\mathcal{K}}
$$

LIE SERIES PERTURBATIONS

With this method the hamiltonian of the problem is SIMPLIFIED VIA A CANONICAL TRANSFORMATION. THE GENERAL LIE SERIES TRANSFORMATION READS

$$
\mathcal{H}^{\prime}=\mathcal{S}_{\chi}^{\epsilon} \mathcal{H}=\sum_{n=0} \frac{\epsilon^{n}}{n!} \mathcal{L}_{\chi}^{n} \mathcal{H}
$$

At THE FIRST ORDER IN THE LIE DERIVATIVE THE TRANSFORMATION DEGENERATES TO A POISSON BRACKET.

$$
\mathcal{H}^{\prime}=\mathcal{H}_{0}+\epsilon \underbrace{\left(\left\{\mathcal{H}_{0}, \chi\right\}+\mathcal{H}_{1}\right)}_{\mathcal{K}}
$$

Writing the Eil Hamiltonian as $\mathcal{H}=\mathcal{H}_{0}+\epsilon \mathcal{H}_{1}$ the task is to find the function χ such that \mathcal{H}^{\prime} is as simple as POSSIBLE.

Lie Series Perturbations

With this method the hamiltonian of the problem is SIMPLIFIED VIA A CANONICAL TRANSFORMATION. THE GENERAL LIE SERIES TRANSFORMATION READS

$$
\mathcal{H}^{\prime}=\mathcal{S}_{\chi}^{\epsilon} \mathcal{H}=\sum_{n=0} \frac{\epsilon^{n}}{n!} \mathcal{L}_{\chi}^{n} \mathcal{H}
$$

At THE FIRST ORDER IN THE LIE DERIVATIVE THE TRANSFORMATION DEGENERATES TO A POISSON BRACKET.

$$
\mathcal{H}^{\prime}=\mathcal{H}_{0}+\epsilon \underbrace{\left(\left\{\mathcal{H}_{0}, \chi\right\}+\mathcal{H}_{1}\right)}_{\mathcal{K}}
$$

Writing the Eil Hamiltonian as $\mathcal{H}=\mathcal{H}_{0}+\epsilon \mathcal{H}_{1}$ the task is to find the function χ such that \mathcal{H}^{\prime} is as simple as POSSIBLE.

Lie Series Perturbations

Lie Series Perturbations

IN OUR SPECIFIC CASE

$$
\left\{\mathcal{H}_{\mathrm{N}}, \chi\right\}=-\frac{\partial \mathcal{H}_{\mathrm{N}}}{\partial L} \frac{\partial \chi}{\partial l}=-\frac{\mathcal{G}^{2} m_{2}^{2}}{L^{3}} \frac{\partial \chi}{\partial l}
$$

Lie Series Perturbations

IN OUR SPECIFIC CASE

$$
\left\{\mathcal{H}_{\mathrm{N}}, \chi\right\}=-\frac{\partial \mathcal{H}_{\mathrm{N}}}{\partial L} \frac{\partial \chi}{\partial l}=-\frac{\mathcal{G}^{2} m_{2}^{2}}{L^{3}} \frac{\partial \chi}{\partial l}
$$

SO THAT

$$
\chi=\int \frac{L^{3}}{\mathcal{G}^{2} m_{2}^{2}}\left(\mathcal{H}_{1}-\mathcal{K}\right) d l
$$

LIE SERIES PERTURBATIONS

IN OUR SPECIFIC CASE

$$
\left\{\mathcal{H}_{\mathrm{N}}, \chi\right\}=-\frac{\partial \mathcal{H}_{\mathrm{N}}}{\partial L} \frac{\partial \chi}{\partial l}=-\frac{\mathcal{G}^{2} m_{2}^{2}}{L^{3}} \frac{\partial \chi}{\partial l}
$$

SO THAT

$$
\chi=\int \frac{L^{3}}{\mathcal{G}^{2} m_{2}^{2}}\left(\mathcal{H}_{1}-\mathcal{K}\right) d l
$$

THE ABOVE EQUATION REPRESENT AN AVERAGE OVER THE MEAN MOTION

LIE SERIES PERTURBATIONS

IN OUR SPECIFIC CASE

$$
\left\{\mathcal{H}_{\mathrm{N}}, \chi\right\}=-\frac{\partial \mathcal{H}_{\mathrm{N}}}{\partial L} \frac{\partial \chi}{\partial l}=-\frac{\mathcal{G}^{2} m_{2}^{2}}{L^{3}} \frac{\partial \chi}{\partial l}
$$

SO THAT

$$
\chi=\int \frac{L^{3}}{\mathcal{G}^{2} m_{2}^{2}}\left(\mathcal{H}_{1}-\mathcal{K}\right) d l
$$

The above equation represent an average over the mean MOTION

- ITS RESOLUTION SIMPLIFIES THE HAMILTONIAN IN THE SENSE GIVEN ABOVE

LIE SERIES PERTURBATIONS

IN OUR SPECIFIC CASE

$$
\left\{\mathcal{H}_{\mathrm{N}}, \chi\right\}=-\frac{\partial \mathcal{H}_{\mathrm{N}}}{\partial L} \frac{\partial \chi}{\partial l}=-\frac{\mathcal{G}^{2} m_{2}^{2}}{L^{3}} \frac{\partial \chi}{\partial l}
$$

SO THAT

$$
\chi=\int \frac{L^{3}}{\mathcal{G}^{2} m_{2}^{2}}\left(\mathcal{H}_{1}-\mathcal{K}\right) d l
$$

THE ABOVE EQUATION REPRESENT AN AVERAGE OVER THE MEAN MOTION

- ITS RESOLUTION SIMPLIFIES THE HAMILTONIAN IN THE SENSE GIVEN ABOVE
- ITS RESULTS IS VALID EVEN FOR HIGHLY ECCENTRIC ORBITS (BUT STILL ELLIPTIC)

New HAMILTONIAN

New Hamiltonian

With the choice above and making a (CANONiCAL) CHANGE of Variables

$$
\begin{aligned}
\tilde{H}_{*} & =H+\tilde{H} \\
h_{*} & =h-\tilde{h}
\end{aligned}
$$

New Hamiltonian

With the choice above and making a (CANONICAL) CHANGE of VARIABLES

$$
\begin{aligned}
\tilde{H}_{*} & =H+\tilde{H} \\
h_{*} & =h-\tilde{h}
\end{aligned}
$$

the Hamiltonian reads:

NEW HAMILTONIAN

With the choice above and making a (CANONICAL) CHANGE of Variables

$$
\begin{aligned}
\tilde{H}_{*} & =H+\tilde{H} \\
h_{*} & =h-\tilde{h}
\end{aligned}
$$

the Hamiltonian reads:

$$
\begin{aligned}
& \mathcal{H}^{\prime}=\mathcal{H}_{0}+\epsilon \mathcal{F}_{0}+\epsilon \mathcal{F}_{1} \cos h_{*} . \\
& \mathcal{H}_{0}= \frac{1}{2} \mathcal{I}_{1} \tilde{G}^{2}-\frac{\mathcal{G}^{2} m_{2}^{2}}{2 L^{2}}, \\
& \mathcal{F}_{0}= \frac{3 \mathcal{G}^{4} m_{2}^{4}}{8 G^{3} L^{4}}\left[4 H L \tilde{H}_{*}+5 G^{3}-4 L\left(2 G^{2}+H^{2}\right)\right] \\
&+\frac{J_{2} \mathcal{G}^{4} m_{2}^{3}}{2 G^{5} L^{3}}\left[\tilde{H}_{*}\left(G^{2}-3 H^{2}\right)+3 H\left(G^{2}+H^{2}\right)\right] \\
& \mathcal{F}_{1}= \frac{3 \mathcal{G}^{4} m_{2}^{3} G_{x y} \tilde{G}_{x y *}}{2 G^{5} L^{3}}\left(G^{2} m_{2}+H J_{2}\right) .
\end{aligned}
$$

NEW HAMILTONIAN

With the choice above and making a (CANONICAL) CHANGE of Variables

$$
\begin{aligned}
\tilde{H}_{*} & =H+\tilde{H} \\
h_{*} & =h-\tilde{h}
\end{aligned}
$$

the Hamiltonian reads:

$$
\begin{aligned}
& \mathcal{H}^{\prime}=\mathcal{H}_{0}+\epsilon \mathcal{F}_{0}+\epsilon \mathcal{F}_{1} \cos h_{*} \\
& \mathcal{H}_{0}= \frac{1}{2} \mathcal{I}_{1} \tilde{G}^{2}-\frac{\mathcal{G}^{2} m_{2}^{2}}{2 L^{2}} \\
& \mathcal{F}_{0}= \frac{3 \mathcal{G}^{4} m_{2}^{4}}{8 G^{3} L^{4}}\left[4 H L \tilde{H}_{*}+5 G^{3}-4 L\left(2 G^{2}+H^{2}\right)\right] \\
&+\frac{J_{2} \mathcal{G}^{4} m_{2}^{3}}{2 G^{5} L^{3}}\left[\tilde{H}_{*}\left(G^{2}-3 H^{2}\right)+3 H\left(G^{2}+H^{2}\right)\right] \\
& \mathcal{F}_{1}= \frac{3 \mathcal{G}^{4} m_{2}^{3} G_{x y} \tilde{G}_{x y *}}{2 G^{5} L^{3}}\left(G^{2} m_{2}+H J_{2}\right)
\end{aligned}
$$

This Hamiltonian depends only on one angle and it is INTEGRABLE.

The Hamilton Eqs.

THE HAMILTON EQUATIONS HAVE THE FOLLOWING FORM

$$
\begin{array}{rlrl}
\frac{d L}{d t} & =0, & & \frac{d l}{d t}=\frac{\mathcal{G}^{2} m_{2}^{2}}{L^{3}}+\epsilon\left(\frac{\partial \mathcal{F}_{0}}{\partial L}+\frac{\partial \mathcal{F}_{1}}{\partial L} \cos h_{*}\right), \\
\frac{d G}{d t} & =0, & & \frac{d g}{d t}=\epsilon\left(\frac{\partial \mathcal{F}_{0}}{\partial G}+\frac{\partial \mathcal{F}_{1}}{\partial G} \cos h_{*}\right), \\
\frac{d H}{d t} & =\epsilon \mathcal{F}_{1} \sin h_{*}, & & \frac{d h_{*}}{d t}=\epsilon\left(\frac{\partial \mathcal{F}_{0}}{\partial H}+\frac{\partial \mathcal{F}_{1}}{\partial H} \cos h_{*}\right), \\
\frac{d \tilde{G}}{d t}=0, & \frac{d \tilde{g}}{d t}=\mathcal{I}_{1} \tilde{G}+\epsilon \frac{\partial \mathcal{F}_{1}}{\partial \tilde{G}} \cos h_{*}, \\
\frac{d \tilde{H}_{*}}{d t}=0, & \frac{d \tilde{h}}{d t}=\epsilon\left(\frac{\partial \mathcal{F}_{0}}{\partial \tilde{H}_{*}}+\frac{\partial \mathcal{F}_{1}}{\partial \tilde{H}_{*}} \cos h_{*}\right) .
\end{array}
$$

The Hamilton Eqs.

THE HAMILTON EQUATIONS HAVE THE FOLLOWING FORM

$$
\begin{array}{rlrl}
\frac{d L}{d t} & =0, & \frac{d l}{d t}=\frac{\mathcal{G}^{2} m_{2}^{2}}{L^{3}}+\epsilon\left(\frac{\partial \mathcal{F}_{0}}{\partial L}+\frac{\partial \mathcal{F}_{1}}{\partial L} \cos h_{*}\right), \\
\frac{d G}{d t} & =0, & \frac{d g}{d t}=\epsilon\left(\frac{\partial \mathcal{F}_{0}}{\partial G}+\frac{\partial \mathcal{F}_{1}}{\partial G} \cos h_{*}\right), \\
\frac{d H}{d t}=\epsilon \mathcal{F}_{1} \sin h_{*}, & \frac{d h_{*}}{d t}=\epsilon\left(\frac{\partial \mathcal{F}_{0}}{\partial H}+\frac{\partial \mathcal{F}_{1}}{\partial H} \cos h_{*}\right), \\
\frac{d \tilde{G}}{d t}=0, & \frac{d \tilde{g}}{d t}=\mathcal{I}_{1} \tilde{G}+\epsilon \frac{\partial \mathcal{F}_{1}}{\partial \tilde{G}} \cos h_{*}, \\
\frac{d \tilde{H}_{*}}{d t}=0, & \frac{d \tilde{h}}{d t}=\epsilon\left(\frac{\partial \mathcal{F}_{0}}{\partial \tilde{H}_{*}}+\frac{\partial \mathcal{F}_{1}}{\partial \tilde{H}_{*}} \cos h_{*}\right) .
\end{array}
$$

All the momenta apart H are conserved.

The Hamilton Eqs.

THE HAMILTON EQUATIONS HAVE THE FOLLOWING FORM

$$
\begin{array}{ll}
\frac{d L}{d t}=0, & \frac{d l}{d t}=\frac{\mathcal{G}^{2} m_{2}^{2}}{L^{3}}+\epsilon\left(\frac{\partial \mathcal{F}_{0}}{\partial L}+\frac{\partial \mathcal{F}_{1}}{\partial L} \cos h_{*}\right), \\
\frac{d G}{d t}=0, & \frac{d g}{d t}=\epsilon\left(\frac{\partial \mathcal{F}_{0}}{\partial G}+\frac{\partial \mathcal{F}_{1}}{\partial G} \cos h_{*}\right), \\
\frac{d H}{d t}=\epsilon \mathcal{F}_{1} \sin h_{*}, & \frac{d h_{*}}{d t}=\epsilon\left(\frac{\partial \mathcal{F}_{0}}{\partial H}+\frac{\partial \mathcal{F}_{1}}{\partial H} \cos h_{*}\right), \\
\frac{d \tilde{G}}{d t}=0, & \frac{d \tilde{g}}{d t}=\mathcal{I}_{1} \tilde{G}+\epsilon \frac{\partial \mathcal{F}_{1}}{\partial \tilde{G}} \cos h_{*}, \\
\frac{d \tilde{H}_{*}}{d t}=0, & \frac{d \tilde{h}}{d t}=\epsilon\left(\frac{\partial \mathcal{F}_{0}}{\partial \tilde{H}_{*}}+\frac{\partial \mathcal{F}_{1}}{\partial \tilde{H}_{*}} \cos h_{*}\right) .
\end{array}
$$

All the momenta apart H are conserved.
The conservation of \tilde{H}_{*} implies the conservation of the Z COMPONENT OF THE TOTAL ANGULAR MOMENTUM.

EINSTEIN PRECESSION

IN THE CASE OF ABSENCE OF SPIN ALL
MOMENTA ARE CONSTANTS OF MOTION AND
THE EQUATIONS FOR THE AVERAGED
ORBITAL COORDINATES ARE:

$$
\begin{aligned}
\frac{d l}{d t} & =\frac{\mathcal{G}^{2} m_{2}^{2}}{L^{3}}+\epsilon \frac{3 \mathcal{G}^{4} m_{2}^{4}}{2 G L^{5}}(6 L-5 G) \\
\frac{d g}{d t} & =3 \epsilon \frac{m_{2}^{4} \mathcal{G}^{4}}{L^{3} G^{2}} \\
\frac{d h}{d t} & =0
\end{aligned}
$$

THE SECOND EQUATION GIVES THE
CLASSICAL FORMULA

$$
\frac{d g}{d t} \equiv \frac{d \omega}{d t}=\frac{3 m_{2}^{\frac{3}{2}} \mathcal{G}^{\frac{3}{2}}}{c^{2} a^{\frac{5}{2}}\left(1-e^{2}\right)}
$$

LENS-THIRRING EFFECT

IF ONLY THE CENTRAL BODY IS ROTATING, ALL MOMENTA ARE CONSTANTS OF MOTION AND

$$
\begin{aligned}
\frac{d l}{d t} & =\frac{\mathcal{G}^{2} m_{2}^{2}}{L^{3}}+\epsilon\left(\frac{3 \mathcal{G}^{4} m_{2}^{4}}{2 G L^{5}}(6 L-5 G)-\frac{6 \mathcal{G}^{4} H J_{2} m_{2}^{3}}{G^{3} L^{4}}\right) \\
\frac{d g}{d t} & =\frac{3 \epsilon \mathcal{G}^{4} m_{2}^{3}}{G^{4} L^{3}}\left(G^{2} m_{2}-2 H J_{2}\right) \\
\frac{d h}{d t} & =2 \epsilon \frac{m_{2}^{3} \mathcal{G}^{4} J_{2}}{L^{3} G^{3}}
\end{aligned}
$$

THE EINSTEIN PRECESSION IS MODIFIED AND

 THERE APPEARS A PRECESSION OF THE LINES OF NODES WITH ANGULAR VELOCITY$$
\alpha=2 \frac{m_{2}^{3} \mathcal{G}^{4} J_{2}}{c^{2} L^{3} G^{3}}
$$

LENS-THIRRING EFFECT

IF ONLY THE CENTRAL BODY IS ROTATING, ALL
MOMENTA ARE CONSTANTS OF MOTION AND

$$
\begin{aligned}
\frac{d l}{d t} & =\frac{\mathcal{G}^{2} m_{2}^{2}}{L^{3}}+\epsilon\left(\frac{3 \mathcal{G}^{4} m_{2}^{4}}{2 G L^{5}}(6 L-5 G)-\frac{6 \mathcal{G}^{4} H J_{2} m_{2}^{3}}{G^{3} L^{4}}\right) \\
\frac{d g}{d t} & =\frac{3 \epsilon \mathcal{G}^{4} m_{2}^{3}}{G^{4} L^{3}}\left(G^{2} m_{2}-2 H J_{2}\right) \\
\frac{d h}{d t} & =2 \epsilon \frac{m_{2}^{3} \mathcal{G}^{4} J_{2}}{L^{3} G^{3}}
\end{aligned}
$$

THE EINSTEIN PRECESSION IS MODIFIED AND

 THERE APPEARS A PRECESSION OF THE LINES OF NODES WITH ANGULAR VELOCITY$$
\alpha=2 \frac{m_{2}^{3} \mathcal{G}^{4} J_{2}}{c^{2} L^{3} G^{3}}
$$

GEODETIC EFFECT

IF ONLY THE SECONDARY BODY IS ROTATING, WE HAVE

$$
\begin{aligned}
\frac{d H}{d t}= & \frac{3}{2} \epsilon \frac{G_{x y} \mathcal{G}^{4} \tilde{G}_{x y *} m_{2}^{4}}{G^{3} L^{3}} \sin h_{*}, \\
\frac{d h_{*}}{d t}= & \epsilon\left[-3 \frac{H \mathcal{G}^{4} m_{2}^{4}}{G^{3} L^{3}}+\frac{3}{2} \frac{\mathcal{G}^{4} \tilde{H}_{*} m_{2}^{4}}{G^{3} L^{3}}+\left(-\frac{3}{2} \frac{G_{x y} H \mathcal{G}^{4} m_{2}}{G^{3} L^{3} \tilde{G}_{x y *}}\right.\right. \\
& \left.\left.+\frac{3}{2} \frac{G_{x y} \mathcal{G}^{4} \tilde{H}_{*} m_{2}^{4}}{G^{3} L^{3} \tilde{G}_{x y *}}-\frac{3}{2} \frac{H \mathcal{G}^{4} \tilde{G}_{x y *} m_{2}^{4}}{G^{3} G_{x y} L^{3}}\right) \cos h_{*}\right]
\end{aligned}
$$

GEODETIC EFFECT

IF ONLY THE SECONDARY BODY IS ROTATING, WE HAVE

$$
\begin{aligned}
\frac{d H}{d t}= & \frac{3}{2} \epsilon \frac{G_{x y} \mathcal{G}^{4} \tilde{G}_{x y *} m_{2}{ }^{4}}{G^{3} L^{3}} \sin h_{*}, \\
\frac{d h_{*}}{d t}= & \epsilon\left[-3 \frac{H \mathcal{G}^{4} m_{2}{ }^{4}}{G^{3} L^{3}}+\frac{3}{2} \frac{\mathcal{G}^{4} \tilde{H}_{*} m_{2}{ }^{4}}{G^{3} L^{3}}+\left(-\frac{3}{2} \frac{G_{x y} H \mathcal{G}^{4} m_{2}{ }^{4}}{G^{3} L^{3} \tilde{G}_{x y *}}\right.\right. \\
& \left.\left.+\frac{3}{2} \frac{G_{x y} \mathcal{G}^{4} \tilde{H}_{*} m_{2}{ }^{4}}{G^{3} L^{3} \tilde{G}_{x y *}}-\frac{3}{2} \frac{H \mathcal{G}^{4} \tilde{G}_{x y *} m_{2}{ }^{4}}{G^{3} G_{x y} L^{3}}\right) \cos h_{*}\right] .
\end{aligned}
$$

THE Z COMPONENT OF THE ORBITAL
ANGULAR MOMENTUM IS NOT A
CONSTANT OF MOTION.

GEODETIC EFFECT

IF ONLY THE SECONDARY BODY IS ROTATING, WE HAVE

$$
\begin{aligned}
\frac{d H}{d t}= & \frac{3}{2} \epsilon \frac{G_{x y} \mathcal{G}^{4} \tilde{G}_{x y *} m_{2}{ }^{4}}{G^{3} L^{3}} \sin h_{*}, \\
\frac{d h_{*}}{d t}= & \epsilon\left[-3 \frac{H \mathcal{G}^{4} m_{2}^{4}}{G^{3} L^{3}}+\frac{3}{2} \frac{\mathcal{G}^{4} \tilde{H}_{*} m_{2}^{4}}{G^{3} L^{3}}+\left(-\frac{3}{2} \frac{G_{x y} H \mathcal{G}^{4} m_{2}}{G^{3} L^{3} \tilde{G}_{x y *}}\right.\right. \\
& \left.\left.+\frac{3}{2} \frac{G_{x y} \mathcal{G}^{4} \tilde{H}_{*} m_{2}{ }^{4}}{G^{3} L^{3} \tilde{G}_{x y *}}-\frac{3}{2} \frac{H \mathcal{G}^{4} \tilde{G}_{x y *} m_{2}^{4}}{G^{3} G_{x y} L^{3}}\right) \cos h_{*}\right]
\end{aligned}
$$

THE Z COMPONENT OF THE ORBITAL
ANGULAR MOMENTUM IS NOT A CONSTANT OF MOTION.

HOWEVER THE CONSERVATION OF THE OTHER MOMENTA INDICATE THAT:

Geodetic Effect

WE CAN ANALYZE THE PHASE SPACE OF THE SYSTEM ABOVE.

GeOdetic Effect

WE CAN ANALYZE THE PHASE SPACE OF THE SYSTEM ABOVE.

WE FIND IN GENERAL THREE FIXED POINTS:
$\mathcal{A}:, ~ \prod_{,}$
B: ${ }^{\uparrow} \|_{\downarrow}$
$C: \sum_{J_{1}}^{z}$

GEODETIC EFFECT

WE CAN ANALYZE THE PHASE SPACE OF THE SYSTEM ABOVE.

WE FIND IN GENERAL THREE FIXED POINTS:
$\mathcal{A}: \quad{ }_{\mathrm{L}} \prod_{\mathrm{J}}$
\mathcal{B} :

...BUT FOR A GIVEN SET OF PARAMETERS ONLY TWO FIXED POINTS APPEAR IN THE PHASE SPACE.

Geodetic Effect

IN THE CASE IN WHICH THE SPIN IS MUCH SMALLER THAN THE ANGULAR MOMENTUM

$$
\frac{d \tilde{h}}{d t}=\epsilon \frac{3 m_{2}^{4} \mathcal{G}^{4}}{2 L^{3} G^{2}}=\frac{3\left(m_{2} \mathcal{G}\right)^{\frac{3}{2}}}{2 c^{2} a^{\frac{5}{2}}\left(1-e^{2}\right)}
$$

WHICH IS THE CLASSICAL FORMULA OF THE GEODETIC EFFECT.

The General Problem

LET US CONSIDER NOW THE GENERAL CASE.
We start with a phase space analysis.

The General Problem

LET US CONSIDER NOW THE GENERAL CASE. We start with a phase space analysis.

The General Problem

LET US CONSIDER NOW THE GENERAL CASE. WE START WITH A PHASE SPACE ANALYSIS.

FIXED POINTS:

- $H^{(e)}=\frac{G^{2}}{\mathcal{J}_{2}}, \quad \cos h_{*}^{(e)}=\frac{G^{2}\left(\frac{G^{2}}{\mathcal{J}_{2}}+\mathcal{J}_{2}-\tilde{H}_{*}\right)}{\mathcal{J}_{2} \tilde{G}_{x y *} G_{x y}}$.
- $f_{6}(H)=0, \quad h_{*}^{(e)}=k \pi$

The General Problem

LET US CONSIDER NOW THE GENERAL CASE. WE START WITH A PHASE SPACE ANALYSIS.

FIXED POINTS:

$\square H^{(e)}=\frac{G^{2}}{\mathcal{J}_{2}}, \quad \cos h_{*}^{(e)}=\frac{G^{2}\left(\frac{G^{2}}{\mathcal{J}_{2}}+\mathcal{J}_{2}-\tilde{H}_{*}\right)}{\mathcal{J}_{2} \tilde{G}_{x y *} G_{x y}}$.

- $f_{6}(H)=0, \quad h_{*}^{(e)}=k \pi$

Stability: SADDLE OR CENTER (TYpicAL OF HAMILTONIAN Systems).

The General Problem

LET US CONSIDER NOW THE GENERAL CASE. WE START WITH A PHASE SPACE ANALYSIS.

FIXED POINTS:
$\square H^{(e)}=\frac{G^{2}}{\mathcal{J}_{2}}, \quad \cos h_{*}^{(e)}=\frac{G^{2}\left(\frac{G^{2}}{\mathcal{J}_{2}}+\mathcal{J}_{2}-\tilde{H}_{*}\right)}{\mathcal{J}_{2} \tilde{G}_{x y *} G_{x y}}$.

- $f_{6}(H)=0, \quad h_{*}^{(e)}=k \pi$

Stability: SADDLE OR CENTER (TYPICAL OF HAMILTONIAN SYSTEMS).
...BUT...

The General Problem

LET US CONSIDER NOW THE GENERAL CASE. WE START WITH A PHASE SPACE ANALYSIS.

FIXED POINTS:

- $H^{(e)}=\frac{G^{2}}{\mathcal{J}_{2}}, \quad \cos h_{*}^{(e)}=\frac{G^{2}\left(\frac{G^{2}}{\mathcal{J}_{2}}+\mathcal{J}_{2}-\tilde{H}_{*}\right)}{\mathcal{J}_{2} \tilde{G}_{x y *} G_{x y}}$.
- $f_{6}(H)=0, \quad h_{*}^{(e)}=k \pi$

Stability: SADDLE OR CENTER (TYPICAL OF HAMILTONIAN SYSTEMS).

THE EXACT SOLUTION

THE EXACT SOLUTION

COMbining the HAmiltonian with the equation for H, ONE HAS

$$
\frac{d H}{d t}= \pm \sqrt{\epsilon^{2} \mathcal{F}_{1}^{2}-\left(\mathcal{H}^{\prime}-\mathcal{H}_{N}-\epsilon \mathcal{F}_{0}\right)^{2}}
$$

THE EXACT SOLUTION

COMbining the HAmiltonian with the equation for H, ONE HAS

$$
\frac{d H}{d t}= \pm \sqrt{\epsilon^{2} \mathcal{F}_{1}^{2}-\left(\mathcal{H}^{\prime}-\mathcal{H}_{N}-\epsilon \mathcal{F}_{0}\right)^{2}}
$$

ONE CAN PROVE THAT THE L.H.S. OF THE ABOVE EQUATION IS A QUARTIC POLYNOMIAL IN H:

$$
\int_{H_{0}}^{H} \pm \frac{d x}{\sqrt{f_{4}(x)}}=\int_{t_{0}}^{t} d \tau
$$

THE EXACT SOLUTION

Combining the HAmiltonian with the equation for H, ONE HAS

$$
\frac{d H}{d t}= \pm \sqrt{\epsilon^{2} \mathcal{F}_{1}^{2}-\left(\mathcal{H}^{\prime}-\mathcal{H}_{N}-\epsilon \mathcal{F}_{0}\right)^{2}}
$$

ONE CAN PROVE THAT THE L.H.S. OF THE ABOVE EQUATION IS A QUARTIC POLYNOMIAL IN H:

$$
\int_{H_{0}}^{H} \pm \frac{d x}{\sqrt{f_{4}(x)}}=\int_{t_{0}}^{t} d \tau
$$

USING A RESULT BY WHITTAKER AND WATSON (1927) WE CAN WRITE THE SOLUTION AS

$$
H(t)=H_{0}+\frac{\frac{1}{2} f_{4}^{\prime}\left(H_{0}\right)\left[\wp(t)-\frac{1}{24} f_{4}^{\prime \prime}\left(H_{0}\right)\right]+\frac{1}{24} f_{4}\left(H_{0}\right) f_{4}^{\prime \prime \prime}\left(H_{0}\right) \pm \sqrt{f_{4}\left(H_{0}\right)} \wp^{\prime}(t)}{2\left[\wp(t)-\frac{1}{24} f_{4}^{\prime \prime}\left(H_{0}\right)\right]^{2}-\frac{1}{48} f_{4}\left(H_{0}\right) f_{4}^{i v}\left(H_{0}\right)},
$$

THE EXACT SOLUTION

COMbining the HAmiltonian with the equation for H, ONE HAS

$$
\frac{d H}{d t}= \pm \sqrt{\epsilon^{2} \mathcal{F}_{1}^{2}-\left(\mathcal{H}^{\prime}-\mathcal{H}_{N}-\epsilon \mathcal{F}_{0}\right)^{2}}
$$

ONE CAN PROVE THAT THE L.H.S. OF THE ABOVE EQUATION IS A QUARTIC POLYNOMIAL IN H:

$$
\int_{H_{0}}^{H} \pm \frac{d x}{\sqrt{f_{4}(x)}}=\int_{t_{0}}^{t} d \tau
$$

USING A RESULT BY WHITTAKER AND WATSON (1927) WE CAN WRITE THE SOLUTION AS

$$
H(t)=H_{0}+\frac{\frac{1}{2} f_{4}^{\prime}\left(H_{0}\right)\left[\wp(t)-\frac{1}{24} f_{4}^{\prime \prime}\left(H_{0}\right)\right]+\frac{1}{24} f_{4}\left(H_{0}\right) f_{4}^{\prime \prime \prime}\left(H_{0}\right) \pm \sqrt{f_{4}\left(H_{0}\right)} \wp^{\prime}(t)}{2\left[\wp(t)-\frac{1}{24} f_{4}^{\prime \prime}\left(H_{0}\right)\right]^{2}-\frac{1}{48} f_{4}\left(H_{0}\right) f_{4}^{i v}\left(H_{0}\right)},
$$

Where $\wp(t)$ is the Weierstrass elliptic function.

THE EXACT SOLUTION

The ExAct SOLUTION

THIS SOLUTION HAS A NUMBER OF INTERESTING PROPERTIES:

The Exact Solution

THIS SOLUTION HAS A NUMBER OF INTERESTING PROPERTIES:

- IT IS GENERALLY A PERIODIC REAL FUNCTION OF THE TIME VARIABLE

The Exact Solution

THIS SOLUTION HAS A NUMBER OF INTERESTING PROPERTIES:

- IT IS GENERALLY A PERIODIC REAL FUNCTION OF THE TIME VARIABLE

F FOR SOME VALUES OF THE PARAMETERS IT CAN DEGENERATE TO A NON-PERIODIC FUNCTION

THE EXACt SOLUTION

THIS SOLUTION HAS A NUMBER OF INTERESTING PROPERTIES:

- IT IS GENERALLY A PERIODIC REAL FUNCTION OF THE TIME VARIABLE

FOR SOME VALUES OF THE PARAMETERS IT CAN DEGENERATE TO A NON-PERIODIC FUNCTION

SOME DEGENERATE FORMS CORRESPOND TO THE SOLUTIONS ASSOCIATED TO THE FIXED POINTS WE FOUND IN THE PHASE SPACE ANALYSIS

THE EXACT SOLUTION

THIS SOLUTION HAS A NUMBER OF INTERESTING PROPERTIES:

- IT IS GENERALLY A PERIODIC REAL FUNCTION OF THE TIME VARIABLE

E FOR SOME VALUES OF THE PARAMETERS IT CAN DEGENERATE TO A NON-PERIODIC FUNCTION

- SOME DEGENERATE FORMS CORRESPOND TO THE SOLUTIONS ASSOCIATED TO THE FIXED POINTS WE FOUND IN THE PHASE SPACE ANALYSIS
- IN THE CASE $J_{2}=0$ THE GENERAL SOLUTION REDUCES TO A PERIODIC FUNCTION WITH ANGULAR VELOCITY

$$
\Omega=\frac{3}{2} \epsilon \frac{m_{2}^{4} \mathcal{G}^{4}}{L^{3} G^{3}} M
$$

NUMERICAL EXAMPLES

IN THE CASE OF A MERCURY-LIKE PLANET WE HAVE

NUMERICAL EXAMPLES

IN THE CASE OF A MERCURY-LIKE PLANET WE HAVE

NUMERICAL EXAMPLES

IN THE CASE OF A MERCURY-LIKE PLANET WE HAVE

Parameter	Value (SI units)
L_{0}	2.77×10^{15}
G_{0}	2.71×10^{15}
H_{0}	2.69×10^{15}
\tilde{G}_{0}	2.95×10^{6}
\tilde{H}_{0}	2.93×10^{6}
J_{2}	1.12×10^{42}
r_{1}	6.37×10^{6}

NUMERICAL EXAMPLES

IN THE CASE OF A GAS GIANT ROTATING AROUND A PULSAR WE HAVE

NUMERICAL EXAMPLES

IN THE CASE OF A GAS GIANT ROTATING AROUND A PULSAR WE HAVE

NUMERICAL EXAMPLES

IN THE CASE OF A GAS GIANT ROTATING AROUND A PULSAR WE HAVE

Parameter	Value (SI units)
L_{0}	3.33×10^{14}
G_{0}	3.32×10^{14}
H_{0}	3.12×10^{14}
\tilde{G}_{0}	5.32×10^{10}
\tilde{H}_{0}	5.23×10^{10}
J_{2}	4.83×10^{41}
r_{1}	2.76×10^{7}

CONCLUSION

- We have analyzed the restricted 2-body problem at THE 1 PN APPROXIMATION USING LIE PERTURBATION THEORY;
- OUR APPROACH ALLOWS A COMPLETE (CLASSICAL) ANALYSIS OF THE PROBLEM AND THE DEDUCTION OF THE EXACT SOLUTION OF THE PROBLEM OF MOTION;
- OUR RESULTS MATCH AND GENERALIZE ALL THE ONES ALREADY FOUND FOR THE EINSTEIN PRECESSION, THE LENSTHIRRING EFFECT AND THE GEODETIC EFFECT;
- FOR PARTICULAR VALUES OF THE PARAMETERS THE SOLUTION FOR THE SYSTEM CAN ACQUIRE A NON- PERIODIC CHARACTER.

THE RPS CONNECTION

THE POSSIBILITY TO SOLVE EXACTLY THE RESTRICTED 2-BODY PROBLEM HAS AN IMPACT IN TERMS OF RPS:

- IN ITS PRESENT FORM OUR RESULTS CAN LEAD A SEMICLASSICAL APPROACH TO THE PROBLEM OF RPS (IS IT USEFUL?)
- Fits well with the ABC way of constructing RPS AND ALLOWS A FIRST EXPLORATION OF MORE REALISTIC SPACETIMES (ROTATING FIELDS, INHOMOGENEOUS FIELDS, ETC.)
- IT OPENS THE EXPLICIT POSSIBILITY TO TEST GENERAL RELATIVITY USING GPS SATELLITES (INTRODUCE PPN PARAMETERS)

