LIE PERTURBATIVE ANALYSIS OF THE RESTRICTED TWO-BODY PROBLEM IN PN-GRAVITATION

SANTE CARLONI ACT-ESA 20/09/2012

SPACE TECHNOLOGIES HAVE MATURED ENOUGH TO PERMIT AN ACCURATE MEASUREMENT OF THE MOTION OF CELESTIAL BODIES (AND ARTIFICIAL OBJECTS);

- SPACE TECHNOLOGIES HAVE MATURED ENOUGH TO PERMIT AN ACCURATE MEASUREMENT OF THE MOTION OF CELESTIAL BODIES (AND ARTIFICIAL OBJECTS);
- SUCH MEASUREMENTS ARE NOW ABLE TO DETECT EVEN RELATIVISTIC CORRECTIONS TO THESE MOTIONS WITH A CERTAIN ACCURACY;

- SPACE TECHNOLOGIES HAVE MATURED ENOUGH TO PERMIT AN ACCURATE MEASUREMENT OF THE MOTION OF CELESTIAL BODIES (AND ARTIFICIAL OBJECTS);
- SUCH MEASUREMENTS ARE NOW ABLE TO DETECT EVEN RELATIVISTIC CORRECTIONS TO THESE MOTIONS WITH A CERTAIN ACCURACY;
- THE STUDY OF SUCH CORRECTIONS IS THE OBJECT OF RELATIVISTIC CELESTIAL MECHANICS (RCM);

- SPACE TECHNOLOGIES HAVE MATURED ENOUGH TO PERMIT AN ACCURATE MEASUREMENT OF THE MOTION OF CELESTIAL BODIES (AND ARTIFICIAL OBJECTS);
- SUCH MEASUREMENTS ARE NOW ABLE TO DETECT EVEN RELATIVISTIC CORRECTIONS TO THESE MOTIONS WITH A CERTAIN ACCURACY;
- THE STUDY OF SUCH CORRECTIONS IS THE OBJECT OF RELATIVISTIC CELESTIAL MECHANICS (RCM);
- RCM WAS USED SO FAR MAINLY TO DETERMINE THE GRAVITATIONAL WAVEFORM EMITTED BY ASTROPHYSICAL OBJECTS, BUT ITS RESULTS CAN BE USED ALSO IN OTHER WAYS...

RCM CAN BE USED AS A POWERFUL TOOL TO TEST GENERAL RELATIVITY AT SOLAR SYSTEM SCALES

- RCM CAN BE USED AS A POWERFUL TOOL TO TEST GENERAL RELATIVITY AT SOLAR SYSTEM SCALES
- ALSO RCM CAN OFFER AN INTERESTING NEW APPROACH TO THE PROBLEM OF A MORE REALISTIC RELATIVISTIC POSITIONING SYSTEM

- RCM CAN BE USED AS A POWERFUL TOOL TO TEST GENERAL RELATIVITY AT SOLAR SYSTEM SCALES
- ALSO RCM CAN OFFER AN INTERESTING NEW APPROACH TO THE PROBLEM OF A MORE REALISTIC RELATIVISTIC POSITIONING SYSTEM
- IN THIS SENSE IT IS IMPORTANT TO FIND NEW WAYS TO SOLVE THE RCM EQUATIONS

- RCM CAN BE USED AS A POWERFUL TOOL TO TEST GENERAL RELATIVITY AT SOLAR SYSTEM SCALES
- ALSO RCM CAN OFFER AN INTERESTING NEW APPROACH TO THE PROBLEM OF A MORE REALISTIC RELATIVISTIC POSITIONING SYSTEM
- IN THIS SENSE IT IS IMPORTANT TO FIND NEW WAYS TO SOLVE THE RCM EQUATIONS
- SUCH CALCULATION IN THE CASE OF THE RESTRICTED TWO BODY PROBLEM IS THE TOPIC OF THE PRESENT TALK

IN THE CASE OF THE RESTRICTED TWO BODIES PROBLEM:

IN THE CASE OF THE RESTRICTED TWO BODIES PROBLEM:

$$\begin{split} \mathcal{H} &= \frac{\mathbf{J}_{1}^{2}}{2I_{1}} + \frac{1}{2} \frac{\mathbf{p}_{1}^{-2}}{m_{1}} - \frac{\mathcal{G}m_{1}m_{2}}{r} - \frac{1}{8c^{2}} \frac{\mathbf{p}_{1}^{-4}}{m_{1}^{3}} - \frac{3\mathbf{p}_{1}^{-2}}{2m_{1}c^{2}} \frac{\mathcal{G}m_{2}}{r} \\ &+ \frac{\mathcal{G}^{2}m_{1}m_{2}^{2}}{2c^{2}r^{2}} + \frac{3\mathcal{G}m_{2}}{2m_{1}c^{2}r^{3}} \mathbf{J}_{1} \cdot (\mathbf{r} \times \mathbf{p}_{1}) + \frac{2\mathcal{G}}{c^{2}r^{3}} \mathbf{J}_{2} \cdot (\mathbf{r} \times \mathbf{p}_{1}) \\ &+ \frac{\mathcal{G}}{c^{2}r^{3}} \left[\frac{3\left(\mathbf{J}_{1} \cdot \mathbf{r}\right)\left(\mathbf{J}_{2} \cdot \mathbf{r}\right)}{r^{2}} - \mathbf{J}_{1} \cdot \mathbf{J}_{2} \right]. \end{split}$$

IN THE CASE OF THE RESTRICTED TWO BODIES PROBLEM:

$$\begin{aligned} \mathcal{H} = & \left[\frac{\mathbf{J}_{1}^{2}}{2I_{1}} + \frac{1}{2} \frac{\mathbf{p_{1}}^{2}}{m_{1}} - \frac{\mathcal{G}m_{1}m_{2}}{r} \right] - \frac{1}{8c^{2}} \frac{\mathbf{p_{1}}^{4}}{m_{1}^{3}} - \frac{3\mathbf{p_{1}}^{2}}{2m_{1}c^{2}} \frac{\mathcal{G}m_{2}}{r} \\ &+ \frac{\mathcal{G}^{2}m_{1}m_{2}^{2}}{2c^{2}r^{2}} + \frac{3\mathcal{G}m_{2}}{2m_{1}c^{2}r^{3}} \mathbf{J}_{1} \cdot (\mathbf{r} \times \mathbf{p_{1}}) + \frac{2\mathcal{G}}{c^{2}r^{3}} \mathbf{J}_{2} \cdot (\mathbf{r} \times \mathbf{p_{1}}) \\ &+ \frac{\mathcal{G}}{c^{2}r^{3}} \left[\frac{3\left(\mathbf{J}_{1} \cdot \mathbf{r}\right)\left(\mathbf{J}_{2} \cdot \mathbf{r}\right)}{r^{2}} - \mathbf{J}_{1} \cdot \mathbf{J}_{2} \right]. \end{aligned}$$

J

 m_1

 J_2

 m_2

IN THE CASE OF THE RESTRICTED TWO BODIES PROBLEM:

$$\begin{aligned} \mathcal{H} &= \frac{\mathbf{J}_{1}^{2}}{2I_{1}} + \frac{1}{2} \frac{\mathbf{p_{1}}^{2}}{m_{1}} - \frac{\mathcal{G}m_{1}m_{2}}{r} \left[-\frac{1}{8c^{2}} \frac{\mathbf{p_{1}}^{4}}{m_{1}^{3}} - \frac{3\mathbf{p_{1}}^{2}}{2m_{1}c^{2}} \frac{\mathcal{G}m_{2}}{r} \right] \\ &+ \frac{\mathcal{G}^{2}m_{1}m_{2}^{2}}{2c^{2}r^{2}} + \frac{3\mathcal{G}m_{2}}{2m_{1}c^{2}r^{3}} \mathbf{J}_{1} \cdot (\mathbf{r} \times \mathbf{p_{1}}) + \frac{2\mathcal{G}}{c^{2}r^{3}} \mathbf{J}_{2} \cdot (\mathbf{r} \times \mathbf{p_{1}}) \\ &+ \frac{\mathcal{G}}{c^{2}r^{3}} \left[\frac{3\left(\mathbf{J}_{1} \cdot \mathbf{r}\right)\left(\mathbf{J}_{2} \cdot \mathbf{r}\right)}{r^{2}} - \mathbf{J}_{1} \cdot \mathbf{J}_{2} \right]. \end{aligned}$$

IN THE CASE OF THE RESTRICTED TWO BODIES PROBLEM:

$$\begin{aligned} \mathcal{H} &= \frac{\mathbf{J}_{1}^{2}}{2I_{1}} + \frac{1}{2} \frac{\mathbf{p_{1}}^{2}}{m_{1}} - \frac{\mathcal{G}m_{1}m_{2}}{r} - \frac{1}{8c^{2}} \frac{\mathbf{p_{1}}^{4}}{m_{1}^{3}} - \frac{3\mathbf{p_{1}}^{2}}{2m_{1}c^{2}} \frac{\mathcal{G}m_{2}}{r} \\ &+ \frac{\mathcal{G}^{2}m_{1}m_{2}^{2}}{2c^{2}r^{2}} \left(+ \frac{3\mathcal{G}m_{2}}{2m_{1}c^{2}r^{3}} \mathbf{J}_{1} \cdot (\mathbf{r} \times \mathbf{p_{1}}) + \frac{2\mathcal{G}}{c^{2}r^{3}} \mathbf{J}_{2} \cdot (\mathbf{r} \times \mathbf{p_{1}}) \right) \\ &+ \frac{\mathcal{G}}{c^{2}r^{3}} \left[\frac{3\left(\mathbf{J}_{1} \cdot \mathbf{r}\right)\left(\mathbf{J}_{2} \cdot \mathbf{r}\right)}{r^{2}} - \mathbf{J}_{1} \cdot \mathbf{J}_{2} \right] \right] \end{aligned}$$

IN THE CASE OF THE RESTRICTED TWO BODIES PROBLEM:

THE GENERATING HAMILTONIAN IN THE BARYCENTER COORDINATE SYSTEM IS

$$\begin{aligned} \mathcal{H} &= \frac{\mathbf{J}_{1}^{2}}{2I_{1}} + \frac{1}{2} \frac{\mathbf{p_{1}}^{2}}{m_{1}} - \frac{\mathcal{G}m_{1}m_{2}}{r} - \frac{1}{8c^{2}} \frac{\mathbf{p_{1}}^{4}}{m_{1}^{3}} - \frac{3\mathbf{p_{1}}^{2}}{2m_{1}c^{2}} \frac{\mathcal{G}m_{2}}{r} \\ &+ \frac{\mathcal{G}^{2}m_{1}m_{2}^{2}}{2c^{2}r^{2}} \left(+ \frac{3\mathcal{G}m_{2}}{2m_{1}c^{2}r^{3}} \mathbf{J}_{1} \cdot (\mathbf{r} \times \mathbf{p_{1}}) + \frac{2\mathcal{G}}{c^{2}r^{3}} \mathbf{J}_{2} \cdot (\mathbf{r} \times \mathbf{p_{1}}) \right) \\ &+ \frac{\mathcal{G}}{c^{2}r^{3}} \left[\frac{3\left(\mathbf{J}_{1} \cdot \mathbf{r}\right)\left(\mathbf{J}_{2} \cdot \mathbf{r}\right)}{r^{2}} - \mathbf{J}_{1} \cdot \mathbf{J}_{2} \right] \right) \end{aligned}$$

THE TWO SPINS "J" ARE DEFINED AS 3D EUCLIDEAN SPIN VECTORS (DAMOUR ET AL. 2008).

WE WILL ASSUME J_2 CONSTANT IN MODULUS AND DIRECTION.

TO ANALYZE THE HAMILTONIAN LET US DEFINE TWO GROUPS OF CANONICAL VARIABLES:

TO ANALYZE THE HAMILTONIAN LET US DEFINE TWO GROUPS OF CANONICAL VARIABLES:

$$\begin{split} L &= \sqrt{\mathcal{G}ma}, \quad G = L\sqrt{1-e^2}, \quad H = G\cos i, \\ l &= M, \qquad g = \omega, \qquad h = \Omega. \end{split}$$

TO ANALYZE THE HAMILTONIAN LET US DEFINE TWO GROUPS OF CANONICAL VARIABLES:

SERRET-ANDOYER VARIABLES

$$L = \sqrt{\mathcal{G}ma}, \quad G = L\sqrt{1-e^2}, \quad H = G\cos i,$$

 $l = M, \qquad g = \omega, \qquad h = \Omega.$

$$\tilde{G} = \frac{J_1}{m_1}, \quad \tilde{H} = \frac{J_{1,z}}{m_1}$$

$$\tilde{h} = \arctan$$

THE HAMILTONIAN CAN THEN BE WRITTEN SCHEMATICALLY AS

$$\mathcal{H} = \mathcal{H}_0 + \frac{1}{c^2} \mathcal{H}_1,$$

WHERE

$$\begin{aligned} \mathcal{H}_{0} &= \frac{1}{2} \mathcal{I}_{1} \tilde{G}^{2} - \frac{\mathcal{G}^{2} m_{2}^{2}}{2L^{2}}, \\ \mathcal{H}_{1} &= \mathcal{A}_{0} + \frac{\mathcal{A}_{1}}{r} + \frac{\mathcal{A}_{2}}{r^{2}} + \frac{1}{r^{3}} \left(\mathcal{A}_{3a} + \mathcal{A}_{3b} \cos\left(\tilde{h} - h\right) \right) \\ &+ \frac{1}{r^{3}} \left(\mathcal{B}_{0} \cos\left(2f + 2g\right) + \mathcal{B}_{1} \cos\left(2f + 2g + \tilde{h} - h\right) \right) \\ &+ \mathcal{B}_{2} \cos\left(2f + 2g - \tilde{h} + h\right) \right), \end{aligned}$$
$$\begin{aligned} \mathcal{A}_{i} &= \mathcal{A}_{i} (L, G, H, \tilde{G}, \tilde{H}) \qquad \qquad f = f(L, G, l) \\ \mathcal{B}_{i} &= \mathcal{B}_{i} (L, G, H, \tilde{G}, \tilde{H}) \qquad \qquad r = r(L, G, l) \end{aligned}$$

WITH THIS METHOD THE HAMILTONIAN OF THE PROBLEM IS SIMPLIFIED VIA A CANONICAL TRANSFORMATION. THE GENERAL LIE SERIES TRANSFORMATION READS

$$\mathcal{H}' = \mathcal{S}^{\epsilon}_{\chi} \mathcal{H} = \sum_{n=0} \frac{\epsilon^n}{n!} \mathcal{L}^n_{\chi} \mathcal{H},$$

WITH THIS METHOD THE HAMILTONIAN OF THE PROBLEM IS SIMPLIFIED VIA A CANONICAL TRANSFORMATION. THE GENERAL LIE SERIES TRANSFORMATION READS

$$\mathcal{H}' = \mathcal{S}^{\epsilon}_{\chi} \mathcal{H} = \sum_{n=0} \frac{\epsilon^n}{n!} \mathcal{L}^n_{\chi} \mathcal{H},$$

AT THE FIRST ORDER IN THE LIE DERIVATIVE THE TRANSFORMATION DEGENERATES TO A POISSON BRACKET.

$$\mathcal{H}' = \mathcal{H}_0 + \epsilon \underbrace{\left(\{\mathcal{H}_0, \chi\} + \mathcal{H}_1\right)}_{\mathcal{K}}.$$

WITH THIS METHOD THE HAMILTONIAN OF THE PROBLEM IS SIMPLIFIED VIA A CANONICAL TRANSFORMATION. THE GENERAL LIE SERIES TRANSFORMATION READS

$$\mathcal{H}' = \mathcal{S}^{\epsilon}_{\chi} \mathcal{H} = \sum_{n=0} \frac{\epsilon^n}{n!} \mathcal{L}^n_{\chi} \mathcal{H},$$

AT THE FIRST ORDER IN THE LIE DERIVATIVE THE TRANSFORMATION DEGENERATES TO A POISSON BRACKET.

$$\mathcal{H}' = \mathcal{H}_0 + \epsilon \underbrace{\left(\{\mathcal{H}_0, \chi\} + \mathcal{H}_1\right)}_{\mathcal{K}}.$$

Writing the EIH Hamiltonian as $\mathcal{H} = \mathcal{H}_0 + \epsilon \mathcal{H}_1$ the task is to find the function χ such that \mathcal{H}' is as simple as possible.

WITH THIS METHOD THE HAMILTONIAN OF THE PROBLEM IS SIMPLIFIED VIA A CANONICAL TRANSFORMATION. THE GENERAL LIE SERIES TRANSFORMATION READS

$$\mathcal{H}' = \mathcal{S}^{\epsilon}_{\chi} \mathcal{H} = \sum_{n=0}^{\infty} \frac{\epsilon^n}{n!} \mathcal{L}^n_{\chi} \mathcal{H},$$

AT THE FIRST ORDER IN THE LIE DERIVATIVE THE TRANSFORMATION DEGENERATES TO A POISSON BRACKET.

$$\mathcal{H}' = \mathcal{H}_0 + \epsilon \underbrace{\left(\{\mathcal{H}_0, \chi\} + \mathcal{H}_1\right)}_{\mathcal{K}}$$

Writing the EIH Hamiltonian as $\mathcal{H} = \mathcal{H}_0 + \epsilon \mathcal{H}_1$ the task is to find the function χ such that \mathcal{H}' is as simple as possible.

IN OUR SPECIFIC CASE

$$\{\mathcal{H}_{\mathrm{N}},\chi\} = -\frac{\partial\mathcal{H}_{\mathrm{N}}}{\partial L}\frac{\partial\chi}{\partial l} = -\frac{\mathcal{G}^{2}m_{2}^{2}}{L^{3}}\frac{\partial\chi}{\partial l},$$

IN OUR SPECIFIC CASE

$$\{\mathcal{H}_{\mathrm{N}},\chi\} = -\frac{\partial\mathcal{H}_{\mathrm{N}}}{\partial L}\frac{\partial\chi}{\partial l} = -\frac{\mathcal{G}^2m_2^2}{L^3}\frac{\partial\chi}{\partial l},$$

SO THAT

$$\chi = \int \frac{L^3}{\mathcal{G}^2 m_2^2} \left(\mathcal{H}_1 - \mathcal{K} \right) dl.$$

IN OUR SPECIFIC CASE

$$\{\mathcal{H}_{\mathrm{N}},\chi\} = -\frac{\partial\mathcal{H}_{\mathrm{N}}}{\partial L}\frac{\partial\chi}{\partial l} = -\frac{\mathcal{G}^2m_2^2}{L^3}\frac{\partial\chi}{\partial l},$$

SO THAT

$$\chi = \int \frac{L^3}{\mathcal{G}^2 m_2^2} \left(\mathcal{H}_1 - \mathcal{K} \right) dl.$$

THE ABOVE EQUATION REPRESENT AN AVERAGE OVER THE MEAN MOTION

IN OUR SPECIFIC CASE

$$\{\mathcal{H}_{\mathrm{N}},\chi\} = -\frac{\partial\mathcal{H}_{\mathrm{N}}}{\partial L}\frac{\partial\chi}{\partial l} = -\frac{\mathcal{G}^2m_2^2}{L^3}\frac{\partial\chi}{\partial l},$$

SO THAT

$$\chi = \int \frac{L^3}{\mathcal{G}^2 m_2^2} \left(\mathcal{H}_1 - \mathcal{K} \right) dl.$$

THE ABOVE EQUATION REPRESENT AN AVERAGE OVER THE MEAN MOTION

ITS RESOLUTION SIMPLIFIES THE HAMILTONIAN IN THE SENSE GIVEN ABOVE

IN OUR SPECIFIC CASE

$$\{\mathcal{H}_{\mathrm{N}},\chi\} = -\frac{\partial\mathcal{H}_{\mathrm{N}}}{\partial L}\frac{\partial\chi}{\partial l} = -\frac{\mathcal{G}^2m_2^2}{L^3}\frac{\partial\chi}{\partial l},$$

SO THAT

$$\chi = \int \frac{L^3}{\mathcal{G}^2 m_2^2} \left(\mathcal{H}_1 - \mathcal{K} \right) dl.$$

THE ABOVE EQUATION REPRESENT AN AVERAGE OVER THE MEAN MOTION

ITS RESOLUTION SIMPLIFIES THE HAMILTONIAN IN THE SENSE GIVEN ABOVE

ITS RESULTS IS VALID EVEN FOR HIGHLY ECCENTRIC ORBITS (BUT STILL ELLIPTIC)

NEW HAMILTONIAN

NEW HAMILTONIAN

WITH THE CHOICE ABOVE AND MAKING A (CANONICAL) CHANGE

OF VARIABLES

$$\tilde{H}_* = H + \tilde{H},$$
$$h_* = h - \tilde{h}.$$

NEW HAMILTONIAN

WITH THE CHOICE ABOVE AND MAKING A (CANONICAL) CHANGE OF VARIABLES

$$H_* = H + H_*$$
$$h_* = h - \tilde{h}.$$

THE HAMILTONIAN READS:
NEW HAMILTONIAN

WITH THE CHOICE ABOVE AND MAKING A (CANONICAL) CHANGE OF VARIABLES

$$H_* = H + H$$
$$h_* = h - \tilde{h}.$$

THE HAMILTONIAN READS:

$$\mathcal{H}' = \mathcal{H}_0 + \epsilon \mathcal{F}_0 + \epsilon \mathcal{F}_1 \cos h_*.$$

$$\begin{aligned} \mathcal{H}_{0} &= \frac{1}{2} \mathcal{I}_{1} \tilde{G}^{2} - \frac{\mathcal{G}^{2} m_{2}^{2}}{2L^{2}}, \\ \mathcal{F}_{0} &= \frac{3\mathcal{G}^{4} m_{2}^{4}}{8G^{3}L^{4}} \left[4HL\tilde{H}_{*} + 5G^{3} - 4L \left(2G^{2} + H^{2} \right) \right] \\ &+ \frac{J_{2}\mathcal{G}^{4} m_{2}^{3}}{2G^{5}L^{3}} \left[\tilde{H}_{*} \left(G^{2} - 3H^{2} \right) + 3H \left(G^{2} + H^{2} \right) \right] \\ \mathcal{F}_{1} &= \frac{3\mathcal{G}^{4} m_{2}^{3} G_{xy} \tilde{G}_{xy*}}{2G^{5}L^{3}} \left(G^{2} m_{2} + HJ_{2} \right). \end{aligned}$$

NEW HAMILTONIAN

WITH THE CHOICE ABOVE AND MAKING A (CANONICAL) CHANGE OF VARIABLES

$$H_* = H + H$$
$$h_* = h - \tilde{h}.$$

THE HAMILTONIAN READS:

$$\mathcal{H}' = \mathcal{H}_0 + \epsilon \mathcal{F}_0 + \epsilon \mathcal{F}_1 \cos h_*.$$

$$\begin{aligned} \mathcal{H}_{0} &= \frac{1}{2} \mathcal{I}_{1} \tilde{G}^{2} - \frac{\mathcal{G}^{2} m_{2}^{2}}{2L^{2}}, \\ \mathcal{F}_{0} &= \frac{3\mathcal{G}^{4} m_{2}^{4}}{8G^{3}L^{4}} \left[4HL\tilde{H}_{*} + 5G^{3} - 4L \left(2G^{2} + H^{2} \right) \right] \\ &+ \frac{J_{2}\mathcal{G}^{4} m_{2}^{3}}{2G^{5}L^{3}} \left[\tilde{H}_{*} \left(G^{2} - 3H^{2} \right) + 3H \left(G^{2} + H^{2} \right) \right] \\ \mathcal{F}_{1} &= \frac{3\mathcal{G}^{4} m_{2}^{3} G_{xy} \tilde{G}_{xy*}}{2G^{5}L^{3}} \left(G^{2} m_{2} + HJ_{2} \right). \end{aligned}$$

THIS HAMILTONIAN DEPENDS ONLY ON ONE ANGLE AND IT IS

INTEGRABLE.

Thursday, 20 September, 2012

THE HAMILTON EQS.

THE HAMILTON EQUATIONS HAVE THE FOLLOWING FORM

$$\begin{aligned} \frac{dL}{dt} &= 0, \\ \frac{dG}{dt} &= 0, \\ \frac{dH}{dt} &= \epsilon \mathcal{F}_1 \sin h_*, \\ \frac{d\tilde{G}}{dt} &= 0, \\ \frac{d\tilde{H}_*}{dt} &= 0, \end{aligned}$$

$$\begin{aligned} \frac{dl}{dt} &= \frac{\mathcal{G}^2 m_2^2}{L^3} + \epsilon \left(\frac{\partial \mathcal{F}_0}{\partial L} + \frac{\partial \mathcal{F}_1}{\partial L} \cos h_* \right), \\ \frac{dg}{dt} &= \epsilon \left(\frac{\partial \mathcal{F}_0}{\partial G} + \frac{\partial \mathcal{F}_1}{\partial G} \cos h_* \right), \\ \frac{dh_*}{dt} &= \epsilon \left(\frac{\partial \mathcal{F}_0}{\partial H} + \frac{\partial \mathcal{F}_1}{\partial H} \cos h_* \right), \\ \frac{d\tilde{g}}{dt} &= \mathcal{I}_1 \tilde{G} + \epsilon \frac{\partial \mathcal{F}_1}{\partial \tilde{G}} \cos h_*, \\ \frac{d\tilde{h}}{dt} &= \epsilon \left(\frac{\partial \mathcal{F}_0}{\partial \tilde{H}_*} + \frac{\partial \mathcal{F}_1}{\partial \tilde{H}_*} \cos h_* \right). \end{aligned}$$

THE HAMILTON EQS.

THE HAMILTON EQUATIONS HAVE THE FOLLOWING FORM

 $\begin{aligned} \frac{dL}{dt} &= 0, \\ \frac{dG}{dt} &= 0, \\ \frac{dH}{dt} &= \epsilon \mathcal{F}_1 \sin h_*, \\ \frac{d\tilde{G}}{dt} &= 0, \\ \frac{d\tilde{H}_*}{dt} &= 0, \end{aligned}$

$$\begin{aligned} \frac{dl}{dt} &= \frac{\mathcal{G}^2 m_2^2}{L^3} + \epsilon \left(\frac{\partial \mathcal{F}_0}{\partial L} + \frac{\partial \mathcal{F}_1}{\partial L} \cos h_* \right), \\ \frac{dg}{dt} &= \epsilon \left(\frac{\partial \mathcal{F}_0}{\partial G} + \frac{\partial \mathcal{F}_1}{\partial G} \cos h_* \right), \\ \frac{dh_*}{dt} &= \epsilon \left(\frac{\partial \mathcal{F}_0}{\partial H} + \frac{\partial \mathcal{F}_1}{\partial H} \cos h_* \right), \\ \frac{d\tilde{g}}{dt} &= \mathcal{I}_1 \tilde{G} + \epsilon \frac{\partial \mathcal{F}_1}{\partial \tilde{G}} \cos h_*, \\ \frac{d\tilde{h}}{dt} &= \epsilon \left(\frac{\partial \mathcal{F}_0}{\partial \tilde{H}_*} + \frac{\partial \mathcal{F}_1}{\partial \tilde{H}_*} \cos h_* \right). \end{aligned}$$

All the momenta apart H are conserved.

THE HAMILTON EQS.

THE HAMILTON EQUATIONS HAVE THE FOLLOWING FORM

$$\begin{aligned} \frac{dL}{dt} &= 0, & \frac{dl}{dt} = \frac{\mathcal{G}^2 m_2^2}{L^3} + \epsilon \left(\frac{\partial \mathcal{F}_0}{\partial L} + \frac{\partial \mathcal{F}_1}{\partial L} \cos h_*\right), \\ \frac{dG}{dt} &= 0, & \frac{dg}{dt} = \epsilon \left(\frac{\partial \mathcal{F}_0}{\partial G} + \frac{\partial \mathcal{F}_1}{\partial G} \cos h_*\right), \\ \frac{dH}{dt} &= \epsilon \mathcal{F}_1 \sin h_*, & \frac{dh_*}{dt} = \epsilon \left(\frac{\partial \mathcal{F}_0}{\partial H} + \frac{\partial \mathcal{F}_1}{\partial H} \cos h_*\right), \\ \frac{d\tilde{G}}{dt} &= 0, & \frac{d\tilde{g}}{dt} = \mathcal{I}_1 \tilde{G} + \epsilon \frac{\partial \mathcal{F}_1}{\partial \tilde{G}} \cos h_*, \\ \frac{d\tilde{H}_*}{dt} &= 0, & \frac{d\tilde{h}}{dt} = \epsilon \left(\frac{\partial \mathcal{F}_0}{\partial \tilde{H}_*} + \frac{\partial \mathcal{F}_1}{\partial \tilde{H}_*} \cos h_*\right). \end{aligned}$$

All the momenta apart H are conserved.

The conservation of \hat{H}_* implies the conservation of the z component of the total angular momentum.

EINSTEIN PRECESSION

IN THE CASE OF ABSENCE OF SPIN ALL MOMENTA ARE CONSTANTS OF MOTION AND THE EQUATIONS FOR THE AVERAGED ORBITAL COORDINATES ARE:

$$\begin{split} \frac{dl}{dt} &= \frac{\mathcal{G}^2 m_2^2}{L^3} + \epsilon \frac{3\mathcal{G}^4 m_2^4}{2GL^5} (6L - 5G), \\ \frac{dg}{dt} &= 3\epsilon \frac{m_2^4 \mathcal{G}^4}{L^3 G^2}, \\ \frac{dh}{dt} &= 0. \end{split}$$

THE SECOND EQUATION GIVES THE

CLASSICAL FORMULA

$$\frac{dg}{dt} \equiv \frac{d\omega}{dt} = \frac{3m_2^{\frac{3}{2}}\mathcal{G}^{\frac{3}{2}}}{c^2 a^{\frac{5}{2}} (1-e^2)},$$

LENS-THIRRING EFFECT

IF ONLY THE CENTRAL BODY IS ROTATING, ALL MOMENTA ARE CONSTANTS OF MOTION AND

$$\begin{split} \frac{dl}{dt} &= \frac{\mathcal{G}^2 m_2^2}{L^3} + \epsilon \left(\frac{3\mathcal{G}^4 m_2^4}{2GL^5} (6L - 5G) - \frac{6\mathcal{G}^4 H J_2 m_2^3}{G^3 L^4} \right), \\ \frac{dg}{dt} &= \frac{3\epsilon \mathcal{G}^4 m_2^3}{G^4 L^3} \left(G^2 m_2 - 2H J_2 \right), \\ \frac{dh}{dt} &= 2\epsilon \frac{m_2^3 \mathcal{G}^4 J_2}{L^3 G^3}. \end{split}$$

THE EINSTEIN PRECESSION IS MODIFIED AND THERE APPEARS A PRECESSION OF THE LINES OF NODES WITH ANGULAR VELOCITY

$$\alpha = 2 \frac{m_2^3 \mathcal{G}^4 J_2}{c^2 L^3 G^3}.$$

Thursday, 20 September, 2012

LENS-THIRRING EFFECT

IF ONLY THE CENTRAL BODY IS ROTATING, ALL MOMENTA ARE CONSTANTS OF MOTION AND

$$\begin{aligned} \frac{dl}{dt} &= \frac{\mathcal{G}^2 m_2^2}{L^3} + \epsilon \left(\frac{3\mathcal{G}^4 m_2^4}{2GL^5} (6L - 5G) - \frac{6\mathcal{G}^4 H J_2 m_2^3}{G^3 L^4} \right), \\ \frac{dg}{dt} &= \frac{3\epsilon \mathcal{G}^4 m_2^3}{G^4 L^3} \left(G^2 m_2 - 2H J_2 \right), \\ \frac{dh}{dt} &= 2\epsilon \frac{m_2^3 \mathcal{G}^4 J_2}{L^3 G^3}. \end{aligned}$$

THE EINSTEIN PRECESSION IS MODIFIED AND THERE APPEARS A PRECESSION OF THE LINES OF NODES WITH ANGULAR VELOCITY

$$\alpha = 2 \frac{m_2^3 \mathcal{G}^4 J_2}{c^2 L^3 G^3}.$$

Thursday, 20 September, 2012

L

J

IF ONLY THE SECONDARY BODY IS ROTATING, WE HAVE

$$\begin{aligned} \frac{dH}{dt} &= \frac{3}{2} \epsilon \frac{G_{xy} \mathcal{G}^4 \tilde{G}_{xy*} m_2^4}{G^3 L^3} \sin h_*, \\ \frac{dh_*}{dt} &= \epsilon \left[-3 \frac{H \mathcal{G}^4 m_2^4}{G^3 L^3} + \frac{3}{2} \frac{\mathcal{G}^4 \tilde{H}_* m_2^4}{G^3 L^3} + \left(-\frac{3}{2} \frac{G_{xy} H \mathcal{G}^4 m_2^4}{G^3 L^3 \tilde{G}_{xy*}} \right. \\ &+ \frac{3}{2} \frac{G_{xy} \mathcal{G}^4 \tilde{H}_* m_2^4}{G^3 L^3 \tilde{G}_{xy*}} - \frac{3}{2} \frac{H \mathcal{G}^4 \tilde{G}_{xy*} m_2^4}{G^3 G_{xy} L^3} \right) \cos h_* \right]. \end{aligned}$$

L

J

IF ONLY THE SECONDARY BODY IS ROTATING, WE HAVE

$$\begin{aligned} \frac{dH}{dt} &= \frac{3}{2} \epsilon \frac{G_{xy} \mathcal{G}^4 \tilde{G}_{xy*} m_2^4}{G^3 L^3} \sin h_*, \\ \frac{dh_*}{dt} &= \epsilon \left[-3 \frac{H \mathcal{G}^4 m_2^4}{G^3 L^3} + \frac{3}{2} \frac{\mathcal{G}^4 \tilde{H}_* m_2^4}{G^3 L^3} + \left(-\frac{3}{2} \frac{G_{xy} H \mathcal{G}^4 m_2^4}{G^3 L^3 \tilde{G}_{xy*}} \right) + \frac{3}{2} \frac{G_{xy} \mathcal{G}^4 \tilde{H}_* m_2^4}{G^3 L^3 \tilde{G}_{xy*}} - \frac{3}{2} \frac{H \mathcal{G}^4 \tilde{G}_{xy*} m_2^4}{G^3 G_{xy} L^3} \right) \cos h_* \right]. \end{aligned}$$

THE Z COMPONENT OF THE ORBITAL ANGULAR MOMENTUM IS NOT A CONSTANT OF MOTION.

Thursday, 20 September, 2012

IF ONLY THE SECONDARY BODY IS ROTATING, WE HAVE

$$\begin{aligned} \frac{dH}{dt} &= \frac{3}{2} \epsilon \frac{G_{xy} \mathcal{G}^4 \tilde{G}_{xy*} m_2^4}{G^3 L^3} \sin h_*, \\ \frac{dh_*}{dt} &= \epsilon \left[-3 \frac{H \mathcal{G}^4 m_2^4}{G^3 L^3} + \frac{3}{2} \frac{\mathcal{G}^4 \tilde{H}_* m_2^4}{G^3 L^3} + \left(-\frac{3}{2} \frac{G_{xy} H \mathcal{G}^4 m_2^4}{G^3 L^3 \tilde{G}_{xy*}} \right) + \frac{3}{2} \frac{G_{xy} \mathcal{G}^4 \tilde{H}_* m_2^4}{G^3 L^3 \tilde{G}_{xy*}} - \frac{3}{2} \frac{H \mathcal{G}^4 \tilde{G}_{xy*} m_2^4}{G^3 G_{xy} L^3} \right) \cos h_* \right]. \end{aligned}$$

THE Z COMPONENT OF THE ORBITAL ANGULAR MOMENTUM IS NOT A CONSTANT OF MOTION.

HOWEVER THE CONSERVATION OF THE OTHER MOMENTA INDICATE THAT:

Jı

WE CAN ANALYZE THE PHASE SPACE OF

THE SYSTEM ABOVE.

WE CAN ANALYZE THE PHASE SPACE OF THE SYSTEM ABOVE.

WE FIND IN GENERAL THREE FIXED POINTS:

$$\mathcal{A}: \bigwedge_{L} \bigcap_{J_1} \mathcal{B}: \bigwedge_{L} \bigcap_{J_1} \mathcal{C}: \bigvee_{J_1}^{z}$$

WE CAN ANALYZE THE PHASE SPACE OF THE SYSTEM ABOVE.

WE FIND IN GENERAL THREE FIXED POINTS:

$$\mathcal{A}: \bigcup_{L \mid J_1} \mathcal{B}: \bigcup_{J_1} \mathcal{C}: \bigcup_{J_1}^{z \mid L \mid J_1}$$

...BUT FOR A GIVEN SET OF PARAMETERS ONLY TWO FIXED POINTS APPEAR IN THE PHASE SPACE.

IN THE CASE IN WHICH THE SPIN IS MUCH SMALLER THAN THE ANGULAR MOMENTUM

$$\frac{d\tilde{h}}{dt} = \epsilon \frac{3m_2^4 \mathcal{G}^4}{2L^3 G^2} = \frac{3\left(m_2 \mathcal{G}\right)^{\frac{3}{2}}}{2c^2 a^{\frac{5}{2}} \left(1 - e^2\right)},$$

WHICH IS THE CLASSICAL FORMULA OF THE GEODETIC EFFECT.

LET US CONSIDER NOW THE GENERAL CASE. WE START WITH A PHASE SPACE ANALYSIS.

LET US CONSIDER NOW THE GENERAL CASE. WE START WITH A PHASE SPACE ANALYSIS.

LET US CONSIDER NOW THE GENERAL CASE. WE START WITH A PHASE SPACE ANALYSIS.

FIXED POINTS:

$$f_6(H) = 0, \qquad h_*^{(e)} = k\pi$$

LET US CONSIDER NOW THE GENERAL CASE. WE START WITH A PHASE SPACE ANALYSIS.

FIXED POINTS:

$$f_6(H) = 0, \qquad h_*^{(e)} = k\pi$$

STABILITY: SADDLE OR CENTER (TYPICAL OF HAMILTONIAN SYSTEMS).

LET US CONSIDER NOW THE GENERAL CASE. WE START WITH A PHASE SPACE ANALYSIS.

FIXED POINTS:

$$f_6(H) = 0, \qquad h_*^{(e)} = k\pi$$

STABILITY: SADDLE OR CENTER (TYPICAL OF HAMILTONIAN SYSTEMS).

...BUT...

LET US CONSIDER NOW THE GENERAL CASE. WE START WITH A PHASE SPACE ANALYSIS.

FIXED POINTS:

$$f_6(H) = 0, \qquad h_*^{(e)} = k\pi$$

STABILITY: SADDLE OR CENTER (TYPICAL OF HAMILTONIAN SYSTEMS).

...BUT...

APERIODIC BEHAVIORS ARE POSSIBLE!

COMBINING THE HAMILTONIAN WITH THE EQUATION FOR H,

ONE HAS

$$\frac{dH}{dt} = \pm \sqrt{\epsilon^2 \mathcal{F}_1^2 - \left(\mathcal{H}' - \mathcal{H}_N - \epsilon \mathcal{F}_0\right)^2},$$

COMBINING THE HAMILTONIAN WITH THE EQUATION FOR H,

ONE HAS

$$\frac{dH}{dt} = \pm \sqrt{\epsilon^2 \mathcal{F}_1^2 - \left(\mathcal{H}' - \mathcal{H}_N - \epsilon \mathcal{F}_0\right)^2},$$

ONE CAN PROVE THAT THE L.H.S. OF THE ABOVE EQUATION IS A QUARTIC POLYNOMIAL IN H:

$$\int_{H_0}^{H} \pm \frac{dx}{\sqrt{f_4(x)}} = \int_{t_0}^{t} d\tau_{t_0}^{T} d\tau_{t_0}^{$$

COMBINING THE HAMILTONIAN WITH THE EQUATION FOR H,

ONE HAS

$$\frac{dH}{dt} = \pm \sqrt{\epsilon^2 \mathcal{F}_1^2 - \left(\mathcal{H}' - \mathcal{H}_N - \epsilon \mathcal{F}_0\right)^2},$$

ONE CAN PROVE THAT THE L.H.S. OF THE ABOVE EQUATION IS A QUARTIC POLYNOMIAL IN H:

$$\int_{H_0}^{H} \pm \frac{dx}{\sqrt{f_4(x)}} = \int_{t_0}^{t} d\tau_4$$

USING A RESULT BY WHITTAKER AND WATSON (1927) WE CAN WRITE THE SOLUTION AS

$$H(t) = H_0 + \frac{\frac{1}{2} f'_4(H_0) \left[\wp(t) - \frac{1}{24} f''_4(H_0)\right] + \frac{1}{24} f_4(H_0) f'''_4(H_0) \pm \sqrt{f_4(H_0)} \wp'(t)}{2 \left[\wp(t) - \frac{1}{24} f''_4(H_0)\right]^2 - \frac{1}{48} f_4(H_0) f^{iv}_4(H_0)}$$

COMBINING THE HAMILTONIAN WITH THE EQUATION FOR H,

ONE HAS

$$\frac{dH}{dt} = \pm \sqrt{\epsilon^2 \mathcal{F}_1^2 - \left(\mathcal{H}' - \mathcal{H}_N - \epsilon \mathcal{F}_0\right)^2},$$

ONE CAN PROVE THAT THE L.H.S. OF THE ABOVE EQUATION IS A QUARTIC POLYNOMIAL IN H:

$$\int_{H_0}^{H} \pm \frac{dx}{\sqrt{f_4(x)}} = \int_{t_0}^{t} d\tau_4$$

USING A RESULT BY WHITTAKER AND WATSON (1927) WE CAN WRITE THE SOLUTION AS

$$H(t) = H_0 + \frac{\frac{1}{2}f'_4(H_0)\left[\wp(t) - \frac{1}{24}f''_4(H_0)\right] + \frac{1}{24}f_4(H_0)f'''_4(H_0) \pm \sqrt{f_4(H_0)}\wp'(t)}{2\left[\wp(t) - \frac{1}{24}f''_4(H_0)\right]^2 - \frac{1}{48}f_4(H_0)f_4^{iv}(H_0)}$$

WHERE $\wp(t)$ is the Weierstrass elliptic function.

THIS SOLUTION HAS A NUMBER OF INTERESTING PROPERTIES:

THIS SOLUTION HAS A NUMBER OF INTERESTING PROPERTIES:

IT IS GENERALLY A PERIODIC REAL FUNCTION OF THE TIME VARIABLE

THIS SOLUTION HAS A NUMBER OF INTERESTING PROPERTIES:

IT IS GENERALLY A PERIODIC REAL FUNCTION OF THE TIME VARIABLE

FOR SOME VALUES OF THE PARAMETERS IT CAN DEGENERATE TO A NON-PERIODIC FUNCTION

THIS SOLUTION HAS A NUMBER OF INTERESTING PROPERTIES:

IT IS GENERALLY A PERIODIC REAL FUNCTION OF THE TIME VARIABLE

FOR SOME VALUES OF THE PARAMETERS IT CAN DEGENERATE TO A NON-PERIODIC FUNCTION

Some degenerate forms correspond to the solutions associated to the fixed points we found in the phase space analysis

THIS SOLUTION HAS A NUMBER OF INTERESTING PROPERTIES:

IT IS GENERALLY A PERIODIC REAL FUNCTION OF THE TIME VARIABLE

FOR SOME VALUES OF THE PARAMETERS IT CAN DEGENERATE TO A NON-PERIODIC FUNCTION

SOME DEGENERATE FORMS CORRESPOND TO THE SOLUTIONS ASSOCIATED TO THE FIXED POINTS WE FOUND IN THE PHASE SPACE ANALYSIS

IN THE CASE $J_2 = 0$ the general solution reduces to a periodic function with angular velocity

$$\Omega = \frac{3}{2} \epsilon \frac{m_2^4 \mathcal{G}^4}{L^3 G^3} M$$

Thursday, 20 September, 2012

IN THE CASE OF A MERCURY-LIKE PLANET WE HAVE

IN THE CASE OF A MERCURY-LIKE PLANET WE HAVE

IN THE CASE OF A MERCURY-LIKE PLANET WE HAVE

IN THE CASE OF A GAS GIANT ROTATING AROUND A PULSAR WE HAVE
NUMERICAL EXAMPLES

IN THE CASE OF A GAS GIANT ROTATING AROUND A PULSAR WE HAVE

NUMERICAL EXAMPLES

IN THE CASE OF A GAS GIANT ROTATING AROUND A PULSAR WE HAVE

CONCLUSION

- WE HAVE ANALYZED THE RESTRICTED 2-BODY PROBLEM AT THE 1PN APPROXIMATION USING LIE PERTURBATION THEORY;
- OUR APPROACH ALLOWS A COMPLETE (CLASSICAL) ANALYSIS OF THE PROBLEM AND THE DEDUCTION OF THE EXACT SOLUTION OF THE PROBLEM OF MOTION;
- OUR RESULTS MATCH AND GENERALIZE ALL THE ONES ALREADY FOUND FOR THE EINSTEIN PRECESSION, THE LENS-THIRRING EFFECT AND THE GEODETIC EFFECT;
- FOR PARTICULAR VALUES OF THE PARAMETERS THE SOLUTION FOR THE SYSTEM CAN ACQUIRE A NON- PERIODIC CHARACTER.

THE RPS CONNECTION

THE POSSIBILITY TO SOLVE EXACTLY THE RESTRICTED 2-BODY PROBLEM HAS AN IMPACT IN TERMS OF RPS:

- IN ITS PRESENT FORM OUR RESULTS CAN LEAD A SEMICLASSICAL APPROACH TO THE PROBLEM OF RPS (IS IT USEFUL?)
- FITS WELL WITH THE ABC WAY OF CONSTRUCTING RPS AND ALLOWS A FIRST EXPLORATION OF MORE REALISTIC SPACETIMES (ROTATING FIELDS, INHOMOGENEOUS FIELDS, ETC.)

IT OPENS THE EXPLICIT POSSIBILITY TO TEST GENERAL RELATIVITY USING GPS SATELLITES (INTRODUCE PPN PARAMETERS)

